Git Product home page Git Product logo

neuralvolumes's Introduction

Neural Volumes

This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of objects & scenes that can be rendered and animated from only calibrated multi-view video.

Neural Volumes

Citing Neural Volumes

If you use Neural Volumes in your research, please cite the paper:

@article{Lombardi:2019,
 author = {Stephen Lombardi and Tomas Simon and Jason Saragih and Gabriel Schwartz and Andreas Lehrmann and Yaser Sheikh},
 title = {Neural Volumes: Learning Dynamic Renderable Volumes from Images},
 journal = {ACM Trans. Graph.},
 issue_date = {July 2019},
 volume = {38},
 number = {4},
 month = jul,
 year = {2019},
 issn = {0730-0301},
 pages = {65:1--65:14},
 articleno = {65},
 numpages = {14},
 url = {http://doi.acm.org/10.1145/3306346.3323020},
 doi = {10.1145/3306346.3323020},
 acmid = {3323020},
 publisher = {ACM},
 address = {New York, NY, USA},
}

File Organization

The root directory contains several subdirectories and files:

data/ --- custom PyTorch Dataset classes for loading included data
eval/ --- utilities for evaluation
experiments/ --- location of input data and training and evaluation output
models/ --- PyTorch modules for Neural Volumes
render.py --- main evaluation script
train.py --- main training script

Requirements

  • Python (3.6+)
    • PyTorch (1.2+)
    • NumPy
    • Pillow
    • Matplotlib
  • ffmpeg (in PATH, needed to render videos)

How to Use

There are two main scripts in the root directory: train.py and render.py. The scripts take a configuration file for the experiment that defines the dataset used and the options for the model (e.g., the type of decoder that is used).

A sample set of input data is provided in the v0.1 release and can be downloaded here and extracted into the root directory of the repository. experiments/dryice1/data contains the input images and camera calibration data, and experiments/dryice1/experiment1 contains an example experiment configuration file (experiments/dryice1/experiment1/config.py).

To train the model:

python train.py experiments/dryice1/experiment1/config.py

To render a video of a trained model:

python render.py experiments/dryice1/experiment1/config.py Render

License

See the LICENSE file for details.

neuralvolumes's People

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

neuralvolumes's Issues

Is there a way to render a 3D file from this?

Hello, I was wondering if there is a way to export an .obj/,fbx file along with corresponding materials from this?
If not, do you have any suggestions as to how to go about that if I were to try extend the code to incorporate that functionality?

code for hybrid rendering (section 6.2) doesn't exist?

Hello,

First of all, thank you for releasing the code for your seminal work. I really think neural volumes is one of the works that popularized differentiable rendering and inspired future works such as neural radiance fields.

My question is whether this codebase includes the code for the hybrid rendering method outlined in section 6.2 of the paper. I'm trying to fit Neural Volumes to multi-view video of a full-body human being, similar to the 5th subfigure in Fig. 1 of the main paper, but after reading it more carefully it seems as though I would need to use hybrid rendering to be able to render the fine details of the human being.

Could you

  1. confirm the existence of hybrid rendering in this codebase AND
  2. whether or not hybrid rendering was used to render the full-bodied human being in Fig. 1 of the main paper.

Thank you in advance.

Misaligned views in rendering

Hi,

I am working on MIT dataset to test the network. When I specify a camera to render, it looks fine throughout timeline. However, while rendering the rotating video, the cameras are misaligned as shown in attached screenshot. All cameras look like clustered at the center and views are spread around within the range cameras cover. Is it possible to be any error in KRT or configuration?

Any suggestion is welcome.
issue_MIT_5_cams

How Can I train and render a Person Image

Hi my name is Luan I am trying to render a Person Image but I am not being able to run can you create and for me a folder with the Setting setup to use a person image? Thank you.

Some questions about coordination transformation

Hello,
Thanks for releasing your code. I am impressed by your work. Now I hope to run your code with my our dataset. I have two questions.

Firstly, I see the pose.txt is used in the code to put the objects in the center. If I use my own data, will the file still work?

Secondly, I see the code set the raypos is among -1 and 1. Is it the matrix in this pose file that narrows the range to -1 to 1? My own dataset' range is different.

Thirdly, does the code limit the scope of the template? Does it have to be between 0-255?

Thanks a lot in advance!

Location of the volume

Hi there,

I wonder whether the origin of the volume is (0,0,0)?

I'm testing the method on a public dataset (http://people.csail.mit.edu/drdaniel/mesh_animation), and I know exactly where (0,0,0) is in the images. But the volume seems to float around the scene. This is the first preview for training process:
prog_000001

Each camera is pointing to the opposite side of the scene, so I expect the same for the volume location in images. But for some reason, they are on the same side in the images. Can you help?

Thank you.

Training with our own data

Hi,
I have a few questions on how the data should be formatted and the data format of the provided dryice1.

  • The model expects world space coordinate in meters? i.e if my extrinsics are already in meters do I still need the world_scale=1/256. in config.py file?
  • The extrinsics are in world2cam and the rotation convention is like opencv? i.e, y-down,z-forward and x-right, assuming identity for pose.txt file?
  • how long do I need to train for about 200 frames? And in the config.py file it seems you are skipping some frames? This is ok to do for my own sequence as well?
  • in the KRT file, I see that there's 5 parameters above the RT matrix. This is the distortion correction in opencv format? But it is not used yes?
  • I did not visualize your cameras, so I am not sure how they are distributed. Is it gonna be a problem if I use 50 cameras equally distributed in a half-hemisphere and the subject is already at world origin and 3.5 meters from every cameras? My question is do I need to filter the training cameras so that the back side of subject that is not seen by input 3 cameras is excluded?
  • How do I choose the input cameras? I have a visualization of the cameras . Which camera config should I use? Is this more a question of which testing camera poses I intend to have, i.e narrower the testing cameras' range of view, the closer input training cameras can be? Config_0 is more orthogonal and Config_1 sees less of the backside.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.