Git Product home page Git Product logo

carnd-kidnapped-vehicle-project's Introduction

Overview

This repository contains all the code needed to complete the final project for the Localization course in Udacity's Self-Driving Car Nanodegree.

The file particle_filter.cpp contains the core algorithms for the filter, while the main.cpp handles the interface between the simulator and the particle filter class. The particle_filter.cpp contains the following methods:

  1. init locates the particles around the first gps measurement
  2. prediction moves all the particles using the control signals from the car (steering, speed, accuracy, time passed)
  3. updateWeights transforms particle's perspective into the global perspective. Then, the particles observations get associated to maps landmarks using dataAssociation() and the nearest neighbour approach. Following, the multivariate-Gaussian probability density sets weights.
  4. resample uses the weights to draw a set of new particles out of the current set. The weights represent how well a particle fits the measurement, well-fitting particles spawn multiple times.

Interestingly, the filter works with a minimum amount of 10 particles. Computing 1000 particles results in the same runtime, which could mean the filter runs faster than the simulator provides results. The following gif is made using 1000 particles. The animated car and the beams represent ground truth. The circle is the filter result.

Alt Text

Running the Code

This project involves the Term 2 Simulator which can be downloaded here

This repository includes two files that can be used to set up and install uWebSocketIO for either Linux or Mac systems. For windows you can use either Docker, VMware, or even Windows 10 Bash on Ubuntu to install uWebSocketIO.

Once the install for uWebSocketIO is complete, the main program can be built and ran by doing the following from the project top directory.

  1. mkdir build
  2. cd build
  3. cmake ..
  4. make
  5. ./particle_filter

Alternatively some scripts have been included to streamline this process, these can be leveraged by executing the following in the top directory of the project:

  1. ./clean.sh
  2. ./build.sh
  3. ./run.sh

Tips for setting up your environment can be found here

Note that the programs that need to be written to accomplish the project are src/particle_filter.cpp, and particle_filter.h

The program main.cpp has already been filled out, but feel free to modify it.

Here is the main protocol that main.cpp uses for uWebSocketIO in communicating with the simulator.

INPUT: values provided by the simulator to the c++ program

// sense noisy position data from the simulator

["sense_x"]

["sense_y"]

["sense_theta"]

// get the previous velocity and yaw rate to predict the particle's transitioned state

["previous_velocity"]

["previous_yawrate"]

// receive noisy observation data from the simulator, in a respective list of x/y values

["sense_observations_x"]

["sense_observations_y"]

OUTPUT: values provided by the c++ program to the simulator

// best particle values used for calculating the error evaluation

["best_particle_x"]

["best_particle_y"]

["best_particle_theta"]

//Optional message data used for debugging particle's sensing and associations

// for respective (x,y) sensed positions ID label

["best_particle_associations"]

// for respective (x,y) sensed positions

["best_particle_sense_x"] <= list of sensed x positions

["best_particle_sense_y"] <= list of sensed y positions

Your job is to build out the methods in particle_filter.cpp until the simulator output says:

Success! Your particle filter passed!

Implementing the Particle Filter

The directory structure of this repository is as follows:

root
|   build.sh
|   clean.sh
|   CMakeLists.txt
|   README.md
|   run.sh
|
|___data
|   |   
|   |   map_data.txt
|   
|   
|___src
    |   helper_functions.h
    |   main.cpp
    |   map.h
    |   particle_filter.cpp
    |   particle_filter.h

The only file you should modify is particle_filter.cpp in the src directory. The file contains the scaffolding of a ParticleFilter class and some associated methods. Read through the code, the comments, and the header file particle_filter.h to get a sense for what this code is expected to do.

If you are interested, take a look at src/main.cpp as well. This file contains the code that will actually be running your particle filter and calling the associated methods.

Inputs to the Particle Filter

You can find the inputs to the particle filter in the data directory.

The Map*

map_data.txt includes the position of landmarks (in meters) on an arbitrary Cartesian coordinate system. Each row has three columns

  1. x position
  2. y position
  3. landmark id

All other data the simulator provides, such as observations and controls.

  • Map data provided by 3D Mapping Solutions GmbH.

Success Criteria

If your particle filter passes the current grading code in the simulator (you can make sure you have the current version at any time by doing a git pull), then you should pass!

The things the grading code is looking for are:

  1. Accuracy: your particle filter should localize vehicle position and yaw to within the values specified in the parameters max_translation_error and max_yaw_error in src/main.cpp.

  2. Performance: your particle filter should complete execution within the time of 100 seconds.

How to write a README

A well written README file can enhance your project and portfolio. Develop your abilities to create professional README files by completing this free course.

carnd-kidnapped-vehicle-project's People

Contributors

andyatudacity avatar awbrown90 avatar baumanab avatar jensakut avatar mvirgo avatar danziger avatar techmarco avatar swwelch avatar tsekityam avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.