Git Product home page Git Product logo

polyfuzz's Introduction

PyPI - Python PyPI - License PyPI - PyPi Build docs
PolyFuzz performs fuzzy string matching, string grouping, and contains extensive evaluation functions. PolyFuzz is meant to bring fuzzy string matching techniques together within a single framework.

Currently, methods include a variety of edit distance measures, a character-based n-gram TF-IDF, word embedding techniques such as FastText and GloVe, and ๐Ÿค— transformers embeddings.

Corresponding medium post can be found here.

Installation

You can install PolyFuzz via pip:

pip install polyfuzz

This will install the base dependencies. If you want to speed up the cosine similarity comparison and decrease memory usage, you can use sparse_dot_topn which is installed via:

pip install polyfuzz[fast]

If you want to be making use of ๐Ÿค— Transformers, install the additional additional Flair dependency:

pip install polyfuzz[flair]

To install all the additional dependencies:

pip install polyfuzz[all]
Installation Issues

You might run into installation issues with sparse_dot_topn. If so, one solution that has worked for many is by installing it via conda first before installing PolyFuzz:

conda install -c conda-forge sparse_dot_topn

If that does not work, I would advise you to look through their issues](https://github.com/ing-bank/sparse_dot_topn/issues) page or continue to use PolyFuzz without sparse_dot_topn.

Getting Started

For an in-depth overview of the possibilities of PolyFuzz you can check the full documentation here or you can follow along with the notebook here.

Quick Start

The main goal of PolyFuzz is to allow the user to perform different methods for matching strings. We start by defining two lists, one to map from and one to map to. We are going to be using TF-IDF to create n-grams on a character level in order to compare similarity between strings. Then, we calculate the similarity between strings by calculating the cosine similarity between vector representations.

We only have to instantiate PolyFuzz with TF-IDF and match the lists:

from polyfuzz import PolyFuzz

from_list = ["apple", "apples", "appl", "recal", "house", "similarity"]
to_list = ["apple", "apples", "mouse"]

model = PolyFuzz("TF-IDF")
model.match(from_list, to_list)

The resulting matches can be accessed through model.get_matches():

>>> model.get_matches()
         From      To    Similarity
0       apple   apple    1.000000
1      apples  apples    1.000000
2        appl   apple    0.783751
3       recal    None    0.000000
4       house   mouse    0.587927
5  similarity    None    0.000000

NOTE: When instantiating PolyFuzz we also could have used "EditDistance" or "Embeddings" to quickly access Levenshtein and FastText (English) respectively.

Group Matches

We can group the matches To as there might be significant overlap in strings in our to_list. To do this, we calculate the similarity within strings in to_list and use single linkage to then group the strings with a high similarity.

When we extract the new matches, we can see an additional column Group in which all the To matches were grouped to:

>>> model.group(link_min_similarity=0.75)
>>> model.get_matches()
	      From	To		Similarity	Group
0	     apple	apple	1.000000	apples
1	    apples	apples	1.000000	apples
2	      appl	apple	0.783751	apples
3	     recal	None	0.000000	None
4	     house	mouse	0.587927	mouse
5	similarity	None	0.000000	None

As can be seen above, we grouped apple and apples together to apple such that when a string is mapped to apple it will fall in the cluster of [apples, apple] and will be mapped to the first instance in the cluster which is apples.

Precision-Recall Curve

Next, we would like to see how well our model is doing on our data. We express our results as precision and recall where precision is defined as the minimum similarity score before a match is correct and recall the percentage of matches found at a certain minimum similarity score.

Creating the visualizations is as simple as:

model.visualize_precision_recall()

Models

Currently, the following models are implemented in PolyFuzz:

  • TF-IDF
  • EditDistance (you can use any distance measure, see documentation)
  • FastText and GloVe
  • ๐Ÿค— Transformers

With Flair, we can use all ๐Ÿค— Transformers models. We simply have to instantiate any Flair WordEmbedding method and pass it through PolyFuzzy.

All models listed above can be found in polyfuzz.models and can be used to create and compare different models:

from polyfuzz.models import EditDistance, TFIDF, Embeddings
from flair.embeddings import TransformerWordEmbeddings

embeddings = TransformerWordEmbeddings('bert-base-multilingual-cased')
bert = Embeddings(embeddings, min_similarity=0, model_id="BERT")
tfidf = TFIDF(min_similarity=0)
edit = EditDistance()

string_models = [bert, tfidf, edit]
model = PolyFuzz(string_models)
model.match(from_list, to_list)

To access the results, we again can call get_matches but since we have multiple models we get back a dictionary of dataframes back.

In order to access the results of a specific model, call get_matches with the correct id:

>>> model.get_matches("BERT")
        From	    To          Similarity
0	apple	    apple	1.000000
1	apples	    apples	1.000000
2	appl	    apple	0.928045
3	recal	    apples	0.825268
4	house	    mouse	0.887524
5	similarity  mouse	0.791548

Finally, visualize the results to compare the models:

model.visualize_precision_recall(kde=True)

Custom Grouper

We can even use one of the polyfuzz.models to be used as the grouper in case you would like to use something else than the standard TF-IDF model:

model = PolyFuzz("TF-IDF")
model.match(from_list, to_list)

edit_grouper = EditDistance(n_jobs=1)
model.group(edit_grouper)

Custom Models

Although the options above are a great solution for comparing different models, what if you have developed your own? If you follow the structure of PolyFuzz's BaseMatcher
you can quickly implement any model you would like.

Below, we are implementing the ratio similarity measure from RapidFuzz.

import numpy as np
import pandas as pd
from rapidfuzz import fuzz
from polyfuzz.models import BaseMatcher


class MyModel(BaseMatcher):
    def match(self, from_list, to_list):
        # Calculate distances
        matches = [[fuzz.ratio(from_string, to_string) / 100 for to_string in to_list] 
                    for from_string in from_list]
        
        # Get best matches
        mappings = [to_list[index] for index in np.argmax(matches, axis=1)]
        scores = np.max(matches, axis=1)
        
        # Prepare dataframe
        matches = pd.DataFrame({'From': from_list,'To': mappings, 'Similarity': scores})
        return matches

Then, we can simply create an instance of MyModel and pass it through PolyFuzz:

custom_model = MyModel()
model = PolyFuzz(custom_model)

Citation

To cite PolyFuzz in your work, please use the following bibtex reference:

@misc{grootendorst2020polyfuzz,
  author       = {Maarten Grootendorst},
  title        = {PolyFuzz: Fuzzy string matching, grouping, and evaluation.},
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v0.2.2},
  doi          = {10.5281/zenodo.4461050},
  url          = {https://doi.org/10.5281/zenodo.4461050}
}

References

Below, you can find several resources that were used for or inspired by when developing PolyFuzz:

Edit distance algorithms:
These algorithms focus primarily on edit distance measures and can be used in polyfuzz.models.EditDistance:

Other interesting repos:

polyfuzz's People

Contributors

maartengr avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.