Git Product home page Git Product logo

tbtk2017_09_26's Introduction

Compilation

First install TBTK following instructions on https://github.com/dafer45/TBTK/. Make sure the installed version is v0.9.4. If TBTK has been compiled with CUDA support this project can be compiled immediately by typing 'make'. If TBTK has been compiled without CUDA support, the lines

CPropertyExtractor propertyExtractor(
	cSolver,
	NUM_COEFFICIENTS,
	true,
	false,
	true
);

in src/main.cpp first need to be modified to

CPropertyExtractor propertyExtractor(
	cSolver,
	NUM_COEFFICIENTS,
	false,
	false,
	true
);

and the makefile will need to be modified in accordance with instructions provided there. Once this is done, type 'make' to compile the project.

Setup calculation

To setup the calculation for a certain set of parameters, open the file "Parameters" and change the values. The first ten values controls the model, the eleventh parameter controls whether the calculations are done along a 1D cut or over the full surface, and the last parameters controls the ChebyshevSolver.

Run calculation

Type './build/a.out' to run a calculation. Note that the calculations can take many hours to complete (in 2017) for lattice sizes comparable to those in the corresponding article (201x201) even if a GPU is used. At the time of writing the full 2D calculation is likely to be too computationally demanding to be done on a CPU other than for comparatively small lattice sizes.

Plot results

Two different plot scripts are provided for the two cases where cut1D is set to true (1) and false (0). If a calculation was done with cut1D=1, type

./plot.py TBTKResults.h5 1.57 0 0.005

to plot the results. Here The first parameter is the file TBTKResults.h5 where the results are stored after the calculation, the second and third are the polar and azimuthal angles of the spin-polarization, respectively, and the fourth is a smoothing parameter (sigma) used to perform Gaussian smoothing in the energy direction. The value of these parameters can be played with to see the result for different polarization axes and smoothing. The ploted results are found in the folder 'figures'. If the calculation instead was done with cut1D=0, instead write

./plot.py TBTKResults.h5 1.57 0 0.005

tbtk2017_09_26's People

Contributors

dafer45 avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.