Git Product home page Git Product logo

-implementation-of-logistic-regression-using-gradient-descent's Introduction

Implementation-of-Logistic-Regression-Using-Gradient-Descent

AIM:

To write a program to implement the the Logistic Regression Using Gradient Descent.

Equipments Required:

  1. Hardware โ€“ PCs
  2. Anaconda โ€“ Python 3.7 Installation / Jupyter notebook

Algorithm

  1. Import the data file and import numpy, matplotlib and scipy.
  2. Visulaize the data and define the sigmoid function, cost function and gradient descent.
  3. Plot the decision boundary .
  4. Calculate the y-prediction.

Program:

/*
Program to implement the the Logistic Regression Using Gradient Descent.
Developed by: 
RegisterNumber:  
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize    #to remove unwanted data and memory storage

data=np.loadtxt("/content/ex2data1 (1).txt",delimiter=',')
X=data[:,[0,1]]
y=data[:,2]

X[:5]

y[:5]

Visualizing the data
plt.figure()
plt.scatter(X[y==1][:,0],X[y==1][:,1],label="Admitted")
plt.scatter(X[y==0][:,0],X[y==0][:,1],label="Not admitted")
plt.xlabel("Exam 1 score")
plt.ylabel("Exam 2 score")
plt.legend()
plt.show()

Sigmoid fuction
def sigmoid(z):
  return 1/(1+np.exp(-z))
  
plt.plot()
X_plot=np.linspace(-10,10,100)
plt.plot(X_plot, sigmoid(X_plot))
plt.show()

def costFuction(theta,X,y):
  h=sigmoid(np.dot(X,theta))
  J= -(np.dot(y, np.log(h)) + np.dot(1-y,np.log(1-h))) / X.shape[0]
  grad = np.dot(X.T, h-y) / X.shape[0]
  return J,grad
  
X_train=np.hstack((np.ones((X.shape[0],1)),X))
theta=np.array([0,0,0])
J, grad=costFuction(theta, X_train, y)
print(J)
print(grad)

X_train=np.hstack((np.ones((X.shape[0],1)),X))
theta=np.array([-24,0.2,0.2])
J, grad=costFuction(theta, X_train, y)
print(J)
print(grad)

def cost(theta,X,y):
  h = sigmoid(np.dot(X,theta))
  J= -(np.dot(y, np.log(h)) + np.dot(1-y, np.log(1-h))) / X.shape[0]
  return J
  
def gradient(theta,X,y):
  h=sigmoid(np.dot(X,theta))
  grad= np.dot(X.T, h-y) / X.shape[0]
  return grad
  
X_train = np.hstack((np.ones((X.shape[0],1)),X))
theta= np.array([0,0,0])
res = optimize.minimize(fun=cost, x0=theta, args=(X_train,y),method="Newton-CG",jac=gradient)
print(res.fun)
print(res.x)

def plotDecisionBoundary(theta,X,y):
  x_min, x_max = X[:,0].min() - 1, X[:,0].max()+1
  y_min, y_max = X[:,1].min() - 1, X[:,1].max()+1
  xx, yy = np.meshgrid(np.arange(x_min,x_max,0.1),
                       np.arange(y_min,y_max,0.1))
  X_plot = np.c_[xx.ravel(), yy.ravel()]
  X_plot = np.hstack((np.ones((X_plot.shape[0],1)),X_plot))
  y_plot = np.dot(X_plot, theta).reshape(xx.shape)

  plt.figure()
  plt.scatter(X[y==1][:,0],X[y==1][:,1],label="Admitted")
  plt.scatter(X[y==0][:,0],X[y==0][:,1],label="Not admitted")
  plt.contour(xx,yy,y_plot, levels=[0])
  plt.xlabel("Exam 1 score")
  plt.ylabel("Exam 2 score")
  plt.legend()
  plt.show()
  
  plotDecisionBoundary(res.x,X,y)
  
prob = sigmoid(np.dot(np.array([1,45,85]),res.x))
print(prob)

def predict(theta,X):
  X_train = np.hstack((np.ones((X.shape[0],1)),X))
  prob = sigmoid(np.dot(X_train,theta))
  return(prob >= 0.5).astype(int)
  
np.mean(predict(res.x,X)==y)
*/

Output:

Array Value of x

Screenshot 2023-05-11 155230

Array Value of y

Screenshot 2023-05-11 155238

Exam 1 - score graph

Screenshot 2023-05-11 161150

Sigmoid function graph

Screenshot 2023-05-11 155309

X_train_grad value

Screenshot 2023-05-11 155324

Y_train_grad value

Screenshot 2023-05-11 155335

Print res.x

Screenshot 2023-05-11 155723

Decision boundary - graph for exam score

Screenshot 2023-05-11 155730

Proability value

Screenshot 2023-05-11 155822

Prediction value of mean

Screenshot 2023-05-11 155829

Result:

Thus the program to implement the the Logistic Regression Using Gradient Descent is written and verified using python programming.

-implementation-of-logistic-regression-using-gradient-descent's People

Contributors

akilamohan avatar yamunaasri avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.