Git Product home page Git Product logo

swan's Introduction

Swan

License: GPL v3 DOI

Swan (Self-consistent Wannier-function-based quantum transport solver) is an open-source C++ software suitable for large-scale atomistic simulations of electronic structures and transport properties for nano-devices. By using a Wannier function basis (as implemented in the Wannier90 package) to accurately describe the electronic bands, our code is able to efficiently model device structures with first-principles accuracy at a minimal cost of tight-binding calculations. It couples the Keldysh non-equilibrium Green's function formalism and Poisson solver to generate the inhomogeneous charge densities self-consistently with the electrostatic potential profile for the simulated device region. The parallel implementation of the code uses the standard Message Passing Interface (MPI). We depicted our simulation pipeline as below:

swan_pipeline

For more details, please refer to the related paper "Quantum electron transport in ohmic edge contacts between two-dimensional materials" (https://doi.org/10.1021/acsaelm.9b00095).

Author: Wushi Dong ([email protected]) of the Physics Department at The University of Chicago. (Advisor: Peter B. Littlewood)

The author would like to acknowledge the C++ linear algebra library Armadillo.

Installation

Download and install the Armadillo package via the webpage:

http://arma.sourceforge.net/download.html

Install Swan by running the "install.sh" file provided in the package:

sh install.sh

If you want to run the code in parallel, please make sure that relevant MPI implementation is installed.

Example run

To demonstrate the usage of our code, we provide an example run which simulates the 2D edge contact structure studied in our paper (https://arxiv.org/abs/1811.02135).

To run this example: (Make sure MPI is installed since this example will use mpirun)

cd example_run/
sh run.sh

We present in the following two results that one can extract from the above simulation. The first figure shows the converged electrostatic potential profiles under different temperatures. (Inset: comparison between our self-consistent simulation results and analytical predictions using Thomas-Fermi theory.)

swan_potential

The second one is the I-V characteristics under different temperatures for high and low doping levels respectively. From this figure, one can see how doping levels affect the ohmic behavior of the edge contact.

figure_iv

swan's People

Contributors

wushidonguc avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.