Git Product home page Git Product logo

codec-report-standard-javascript's People

Contributors

olivierstephan-watteco avatar watteco avatar wtc-peg avatar

Stargazers

 avatar  avatar

Watchers

 avatar

codec-report-standard-javascript's Issues

Chirpstack error: "execute js error: js vm error: ReferenceError: 'port' is not defined"

hey, i'm having error codes in chirpstack trying to get this decoder to work. Can you help me?
code:
/*

  • JavaScript implementation of brUncompress.
    */

// {{{ Constants

var ST_UNDEF = 0
var ST_BL = 1
var ST_U4 = 2
var ST_I4 = 3
var ST_U8 = 4
var ST_I8 = 5
var ST_U16 = 6
var ST_I16 = 7
var ST_U24 = 8
var ST_I24 = 9
var ST_U32 = 10
var ST_I32 = 11
var ST_FL = 12

var ST = {}
ST[ST_UNDEF] = 0
ST[ST_BL] = 1
ST[ST_U4] = 4
ST[ST_I4] = 4
ST[ST_U8] = 8
ST[ST_I8] = 8
ST[ST_U16] = 16
ST[ST_I16] = 16
ST[ST_U24] = 24
ST[ST_I24] = 24
ST[ST_U32] = 32
ST[ST_I32] = 32
ST[ST_FL] = 32

var BR_HUFF_MAX_INDEX_TABLE = 14
var NUMBER_OF_SERIES = 16

var HUFF = [
[
{ sz: 2, lbl: 0x000 },
{ sz: 2, lbl: 0x001 },
{ sz: 2, lbl: 0x003 },
{ sz: 3, lbl: 0x005 },
{ sz: 4, lbl: 0x009 },
{ sz: 5, lbl: 0x011 },
{ sz: 6, lbl: 0x021 },
{ sz: 7, lbl: 0x041 },
{ sz: 8, lbl: 0x081 },
{ sz: 10, lbl: 0x200 },
{ sz: 11, lbl: 0x402 },
{ sz: 11, lbl: 0x403 },
{ sz: 11, lbl: 0x404 },
{ sz: 11, lbl: 0x405 },
{ sz: 11, lbl: 0x406 },
{ sz: 11, lbl: 0x407 }
],
[
{ sz: 7, lbl: 0x06f },
{ sz: 5, lbl: 0x01a },
{ sz: 4, lbl: 0x00c },
{ sz: 3, lbl: 0x003 },
{ sz: 3, lbl: 0x007 },
{ sz: 2, lbl: 0x002 },
{ sz: 2, lbl: 0x000 },
{ sz: 3, lbl: 0x002 },
{ sz: 6, lbl: 0x036 },
{ sz: 9, lbl: 0x1bb },
{ sz: 9, lbl: 0x1b9 },
{ sz: 10, lbl: 0x375 },
{ sz: 10, lbl: 0x374 },
{ sz: 10, lbl: 0x370 },
{ sz: 11, lbl: 0x6e3 },
{ sz: 11, lbl: 0x6e2 }
],
[
{ sz: 4, lbl: 0x009 },
{ sz: 3, lbl: 0x005 },
{ sz: 2, lbl: 0x000 },
{ sz: 2, lbl: 0x001 },
{ sz: 2, lbl: 0x003 },
{ sz: 5, lbl: 0x011 },
{ sz: 6, lbl: 0x021 },
{ sz: 7, lbl: 0x041 },
{ sz: 8, lbl: 0x081 },
{ sz: 10, lbl: 0x200 },
{ sz: 11, lbl: 0x402 },
{ sz: 11, lbl: 0x403 },
{ sz: 11, lbl: 0x404 },
{ sz: 11, lbl: 0x405 },
{ sz: 11, lbl: 0x406 },
{ sz: 11, lbl: 0x407 }
]
]

// }}}

// {{{ Polyfills
Math.trunc =
Math.trunc ||
function(x) {
if (isNaN(x)) {
return NaN
}
if (x > 0) {
return Math.floor(x)
}
return Math.ceil(x)
}
// }}}

/**

  • brUncompress main function
    */
    function brUncompress(tagsz, argList, hexString, batch_absolute_timestamp) {
    var out = initResult()
    var buffer = createBuffer(parseHexString(hexString))
    var flag = generateFlag(buffer.getNextSample(ST_U8))

out.batch_counter = buffer.getNextSample(ST_U8, 3)
buffer.getNextSample(ST_U8, 1)

var temp = prePopulateOutput(out, buffer, argList, flag, tagsz)
var last_timestamp = temp.last_timestamp
var index_of_the_first_sample = temp.index_of_the_first_sample

if (flag.hasSample) {
last_timestamp = uncompressSamplesData(
out,
buffer,
index_of_the_first_sample,
argList,
last_timestamp,
flag,
tagsz
)
}

out.batch_relative_timestamp = extractTimestampFromBuffer(
buffer,
last_timestamp
)
return adaptToExpectedFormat(out, argList, batch_absolute_timestamp)
}

/////////////// Sub functions ///////////////

/**

  • Init br_uncompress result data structure
    */
    function initResult() {
    var series = [],
    i = 0
    while (i < NUMBER_OF_SERIES) {
    series.push({
    codingType: 0,
    codingTable: 0,
    resolution: null,
    uncompressSamples: []
    })
    i += 1
    }
    return {
    batch_counter: 0,
    batch_relative_timestamp: 0,
    series: series
    }
    }

/**

  • Function to create a buffer from a byteArray. Allow to read sample from the
  • byteArray to extract data.
    /
    function createBuffer(byteArray) {
    /
    *
    • Retrieve the pattern for HUFF table lookup
      */
      function bitsBuf2HuffPattern(byteArray, index, nb_bits) {
      var sourceBitStart = index
      var sz = nb_bits - 1
      if (byteArray.length * 8 < sourceBitStart + nb_bits) {
      throw "Verify that dest buf is large enough"
      }
      var bittoread = 0
      var pattern = 0
      while (nb_bits > 0) {
      if (byteArray[sourceBitStart >> 3] & (1 << (sourceBitStart & 0x07))) {
      pattern |= 1 << (sz - bittoread)
      }
      nb_bits--
      bittoread++
      sourceBitStart++
      }
      return pattern
      }

return {
index: 0,
byteArray: byteArray,
getNextSample: function(sampleType, nbBitsInput) {
var nbBits = nbBitsInput || ST[sampleType]
var sourceBitStart = this.index
this.index += nbBits
if (sampleType === ST_FL && nbBits !== 32) {
throw "Mauvais sampletype"
}

  var u32 = 0
  var nbytes = Math.trunc((nbBits - 1) / 8) + 1
  var nbitsfrombyte = nbBits % 8
  if (nbitsfrombyte === 0 && nbytes > 0) {
    nbitsfrombyte = 8
  }

  while (nbytes > 0) {
    var bittoread = 0
    while (nbitsfrombyte > 0) {
      var idx = sourceBitStart >> 3
      if (this.byteArray[idx] & (1 << (sourceBitStart & 0x07))) {
        u32 |= 1 << ((nbytes - 1) * 8 + bittoread)
      }
      nbitsfrombyte--
      bittoread++
      sourceBitStart += 1
    }
    nbytes--
    nbitsfrombyte = 8
  }
  // Propagate the sign bit if 1
  if (
    (sampleType == ST_I4 || sampleType == ST_I8 ||sampleType == ST_I16 || sampleType == ST_I24) &&
    u32 & (1 << (nbBits - 1))
  ) {
    for (var i = nbBits; i < 32; i++) {
      u32 |= 1 << i
      nbBits++
    }
  }
  return u32
},

/**
 * Extract sz and bi from Huff table
 */
getNextBifromHi: function(huff_coding) {
  for (var i = 2; i < 12; i++) {
    var lhuff = bitsBuf2HuffPattern(this.byteArray, this.index, i)
    for (var j = 0; j < HUFF[huff_coding].length; j++) {
      if (
        HUFF[huff_coding][j].sz == i &&
        lhuff == HUFF[huff_coding][j].lbl
      ) {
        this.index += i
        return j
      }
    }
  }
  throw "Bi not found in HUFF table"
}

}
}

/**

  • Convert the hex string given as parameter to a ByteArray
    */
    function parseHexString(str) {
    str = str
    .split("")
    .filter(function(x) {
    return !isNaN(parseInt(x, 16))
    })
    .join("")
    var result = []
    while (str.length >= 2) {
    result.push(parseInt(str.substring(0, 2), 16))
    str = str.substring(2, str.length)
    }
    return result
    }

/**

  • Generate a flag object from an integer value.
    */
    function generateFlag(flagAsInt) {
    var binbase = flagAsInt.toString(2)

// leftpad
while (binbase.length < 8) {
binbase = "0" + binbase
}

return {
isCommonTimestamp: parseInt(binbase[binbase.length - 2], 2),
hasSample: !parseInt(binbase[binbase.length - 3], 2),
batch_req: parseInt(binbase[binbase.length - 4], 2),
nb_of_type_measure: parseInt(binbase.substring(0, 4), 2)
}
}

/**

  • Prepopulate output with relative timestamp and measure of the first sample

  • for each series.
    */
    function prePopulateOutput(out, buffer, argList, flag, tagsz) {
    var currentTimestamp = 0
    var index_of_the_first_sample = 0
    for (var i = 0; i < flag.nb_of_type_measure; i++) {
    var tag = {
    size: tagsz,
    lbl: buffer.getNextSample(ST_U8, tagsz)
    }
    var sampleIndex = findIndexFromArgList(argList, tag)

    if (i == 0) {
    index_of_the_first_sample = sampleIndex
    }

    currentTimestamp = extractTimestampFromBuffer(buffer, currentTimestamp)
    out.series[sampleIndex] = computeSeries(
    buffer,
    argList[sampleIndex].sampletype,
    tag.lbl,
    currentTimestamp
    )
    if (flag.hasSample) {
    out.series[sampleIndex].codingType = buffer.getNextSample(ST_U8, 2)
    out.series[sampleIndex].codingTable = buffer.getNextSample(ST_U8, 2)
    }
    }
    return {
    last_timestamp: currentTimestamp,
    index_of_the_first_sample: index_of_the_first_sample
    }
    }

/**

  • Initialize next series from buffer
    */
    function computeSeries(buffer, sampletype, label, currentTimestamp) {
    return {
    uncompressSamples: [
    {
    data_relative_timestamp: currentTimestamp,
    data: {
    value: getMeasure(buffer, sampletype),
    label: label
    }
    }
    ],
    codingType: 0,
    codingTable: 0,
    resolution: null
    }
    }

/**

  • Return the index of tag lbl in the argument list
    */
    function findIndexFromArgList(argList, tag) {
    for (var i = 0; i < argList.length; i++) {
    if (argList[i].taglbl === tag.lbl) {
    return i
    }
    }
    throw "Cannot find index in argList"
    }

/**

  • Extract a new time stamp using Huff table, optionnaly from a baseTimestamp
    */
    function extractTimestampFromBuffer(buffer, baseTimestamp) {
    if (baseTimestamp) {
    var bi = buffer.getNextBifromHi(1)
    return computeTimestampFromBi(buffer, baseTimestamp, bi)
    }
    return buffer.getNextSample(ST_U32)
    }

/**

  • Compute a new timestamp from a previous one, regarding bi value
    */
    function computeTimestampFromBi(buffer, baseTimestamp, bi) {
    if (bi > BR_HUFF_MAX_INDEX_TABLE) {
    return buffer.getNextSample(ST_U32)
    }
    if (bi > 0) {
    return computeTimestampFromPositiveBi(buffer, baseTimestamp, bi)
    }
    return baseTimestamp
    }

/**

  • Compute a new timestamp from a previous one, regarding posotive bi value
    */
    function computeTimestampFromPositiveBi(buffer, baseTimestamp, bi) {
    return buffer.getNextSample(ST_U32, bi) + baseTimestamp + Math.pow(2, bi) - 1
    }

/**

  • Extract the measure from the buffer, handling float case
    */

function getMeasure(buffer, sampletype) {
var v = buffer.getNextSample(sampletype)
return sampletype === ST_FL ? bytes2Float32(v) : v
}

/**

  • Convert bytes to a float32 representation.
    */
    function bytes2Float32(bytes) {
    var sign = bytes & 0x80000000 ? -1 : 1,
    exponent = ((bytes >> 23) & 0xff) - 127,
    significand = bytes & ~(-1 << 23)

if (exponent == 128) {
return sign * (significand ? Number.NaN : Number.POSITIVE_INFINITY)
}

if (exponent == -127) {
if (significand == 0) {
return sign * 0.0
}
exponent = -126
significand /= 1 << 22
} else {
significand = (significand | (1 << 23)) / (1 << 23)
}

return sign * significand * Math.pow(2, exponent)
}

/**

  • Uncompress samples data presenting common timestamp or separate timestamp
    */
    function uncompressSamplesData(
    out,
    buffer,
    index_of_the_first_sample,
    argList,
    last_timestamp,
    flag,
    tagsz
    ) {
    if (flag.isCommonTimestamp) {
    return handleCommonTimestamp(
    out,
    buffer,
    index_of_the_first_sample,
    argList,
    flag,
    tagsz
    )
    }
    return handleSeparateTimestamp(
    out,
    buffer,
    argList,
    last_timestamp,
    flag,
    tagsz
    )
    }

/**

  • Uncompress data in case of common timestamp
    */
    function handleCommonTimestamp(
    out,
    buffer,
    index_of_the_first_sample,
    argList,
    flag,
    tagsz
    ) {
    //number of sample
    var nb_sample_to_parse = buffer.getNextSample(ST_U8, 8)
    var tag = {}

var temp = initTimestampCommonTable(
out,
buffer,
nb_sample_to_parse,
index_of_the_first_sample
)
var timestampCommon = temp.timestampCommon
var lastTimestamp = temp.lastTimestamp

for (var j = 0; j < flag.nb_of_type_measure; j++) {
var first_null_delta_value = 1
tag.lbl = buffer.getNextSample(ST_U8, tagsz)
var sampleIndex = findIndexFromArgList(argList, tag)
for (var i = 0; i < nb_sample_to_parse; i++) {
//Available bit
var available = buffer.getNextSample(ST_U8, 1)
if (available) {
//Delta value
var bi = buffer.getNextBifromHi(out.series[sampleIndex].codingTable)
var currentMeasure = {
data_relative_timestamp: 0,
data: {}
}
if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
var precedingValue =
out.series[sampleIndex].uncompressSamples[
out.series[sampleIndex].uncompressSamples.length - 1
].data.value
if (bi > 0) {
currentMeasure.data.value = completeCurrentMeasure(
buffer,
precedingValue,
out.series[sampleIndex].codingType,
argList[sampleIndex].resol,
bi
)
} else {
// (bi <= 0)
if (first_null_delta_value) {
// First value is yet recorded starting from the header
first_null_delta_value = 0
continue
} else {
currentMeasure.data.value = precedingValue
}
}
} else {
// bi > BR_HUFF_MAX_INDEX_TABLE
currentMeasure.data.value = buffer.getNextSample(
argList[sampleIndex].sampletype
)
}
currentMeasure.data_relative_timestamp = timestampCommon[i]
out.series[sampleIndex].uncompressSamples.push(currentMeasure)
}
}
}
return lastTimestamp
}

/**

  • Initialize common timestamp table. Returns the table and last calculated timestamp
    */
    function initTimestampCommonTable(
    out,
    buffer,
    nbSampleToParse,
    firstSampleIndex
    ) {
    var timestampCommon = []
    var lastTimestamp = 0
    var timestampCoding = buffer.getNextSample(ST_U8, 2)
    for (var i = 0; i < nbSampleToParse; i++) {
    //delta timestamp
    var bi = buffer.getNextBifromHi(timestampCoding)
    if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
    if (i == 0) {
    timestampCommon.push(
    out.series[firstSampleIndex].uncompressSamples[0]
    .data_relative_timestamp
    )
    } else {
    if (bi > 0) {
    var precedingTimestamp = timestampCommon[i - 1]
    timestampCommon.push(
    buffer.getNextSample(ST_U32, bi) +
    precedingTimestamp +
    Math.pow(2, bi) -
    1
    )
    } else {
    timestampCommon.push(precedingTimestamp)
    }
    }
    } else {
    timestampCommon.push(buffer.getNextSample(ST_U32))
    }
    lastTimestamp = timestampCommon[i]
    }
    return {
    timestampCommon: timestampCommon,
    lastTimestamp: lastTimestamp
    }
    }

/**

  • Complete current measure from the preceding one
    */
    function completeCurrentMeasure(buffer, precedingValue, codingType, resol, bi) {
    var currentValue = buffer.getNextSample(ST_U16, bi)
    if (codingType === 0) {
    // ADLC
    return computeAdlcValue(currentValue, resol, precedingValue, bi)
    }
    if (codingType === 1) {
    // Positive
    return (currentValue + Math.pow(2, bi) - 1) * resol + precedingValue
    }
    // Negative
    return precedingValue - (currentValue + (Math.pow(2, bi) - 1)) * resol
    }

/**

  • Return current value in ADLC case
    */
    function computeAdlcValue(currentValue, resol, precedingValue, bi) {
    if (currentValue >= Math.pow(2, bi - 1)) {
    return currentValue * resol + precedingValue
    }
    return (currentValue + 1 - Math.pow(2, bi)) * resol + precedingValue
    }

/**

  • Uncompress data in case of separate timestamp
    */
    function handleSeparateTimestamp(
    out,
    buffer,
    argList,
    last_timestamp,
    flag,
    tagsz
    ) {
    var tag = {}
    for (var i = 0; i < flag.nb_of_type_measure; i++) {
    tag.lbl = buffer.getNextSample(ST_U8, tagsz)
    var sampleIndex = findIndexFromArgList(argList, tag)
    var compressSampleNb = buffer.getNextSample(ST_U8, 8)
    if (compressSampleNb) {
    var timestampCoding = buffer.getNextSample(ST_U8, 2)
    for (var j = 0; j < compressSampleNb; j++) {
    var precedingRelativeTimestamp =
    out.series[sampleIndex].uncompressSamples[
    out.series[sampleIndex].uncompressSamples.length - 1
    ].data_relative_timestamp
    var currentMeasure = {
    data_relative_timestamp: 0,
    data: {}
    }
    var bi = buffer.getNextBifromHi(timestampCoding)
    currentMeasure.data_relative_timestamp = computeTimestampFromBi(
    buffer,
    precedingRelativeTimestamp,
    bi
    )
    if (currentMeasure.data_relative_timestamp > last_timestamp) {
    last_timestamp = currentMeasure.data_relative_timestamp
    }
    bi = buffer.getNextBifromHi(out.series[sampleIndex].codingTable)
    if (bi <= BR_HUFF_MAX_INDEX_TABLE) {
    var precedingValue =
    out.series[sampleIndex].uncompressSamples[
    out.series[sampleIndex].uncompressSamples.length - 1
    ].data.value
    if (bi > 0) {
    currentMeasure.data.value = completeCurrentMeasure(
    buffer,
    precedingValue,
    out.series[sampleIndex].codingType,
    argList[sampleIndex].resol,
    bi
    )
    } else {
    // bi <= 0
    currentMeasure.data.value = precedingValue
    }
    } else {
    // bi > BR_HUFF_MAX_INDEX_TABLE
    currentMeasure.data.value = buffer.getNextSample(
    argList[sampleIndex].sampletype
    )
    }
    out.series[sampleIndex].uncompressSamples.push(currentMeasure)
    }
    }
    }
    return last_timestamp
    }

/**

  • Translate brUncompress output data to expected structure
    */
    function adaptToExpectedFormat(out, argList, batchAbsoluteTimestamp) {
    var returnedGlobalObject = {
    //batch_counter: out.batch_counter,
    //batch_relative_timestamp: out.batch_relative_timestamp
    }
    if (batchAbsoluteTimestamp) {
    returnedGlobalObject.b_ts = batchAbsoluteTimestamp
    }
    returnedGlobalObject.datas = out.series.reduce(function(
    acc,
    current,
    index
    ) {
    return acc.concat(
    current.uncompressSamples.map(function(item) {
    var returned = {
    //data_relative_timestamp: item.data_relative_timestamp,
    data: {
    value: argList[index].divide
    ? item.data.value / argList[index].divide
    : item.data.value,

       }
     }
     if (argList[index].lblname) {
       returned.data.label = argList[index].lblname
     }
     if (batchAbsoluteTimestamp) {
       returned.date = computeDataAbsoluteTimestamp(
         batchAbsoluteTimestamp,
         out.batch_relative_timestamp,
         item.data_relative_timestamp
       )
     }
     return returned
    

    })
    )
    },
    [])
    return returnedGlobalObject
    }

/**

  • Compute data absolute timestamp from batch absolute timestamp (bat), batch
  • relative timestamp (brt) and data relative timestamp (drt)
    */
    function computeDataAbsoluteTimestamp(bat, brt, drt) {
    return new Date(new Date(bat) - (brt - drt) * 1000).toISOString()
    }

try {
module.exports = brUncompress
} catch (e) {
// when called from nashorn, module.exports is unavailable…
}

function UintToInt(Uint, Size) {
if (Size === 2) {
if ((Uint & 0x8000) > 0) {
Uint = Uint - 0x10000;
}
}
if (Size === 3) {
if ((Uint & 0x800000) > 0) {
Uint = Uint - 0x1000000;
}
}
if (Size === 4) {
if ((Uint & 0x80000000) > 0) {
Uint = Uint - 0x100000000;
}
}
return Uint;
}

function decimalToHex(d, padding) {
var hex = Number(d).toString(16).toUpperCase();
padding = typeof (padding) === "undefined" || padding === null ? padding = 2 : padding;

while (hex.length < padding) {
hex = "0" + hex;
}

return "0x" + hex;
}

function Bytes2Float32(bytes) {

var sign = (bytes & 0x80000000) ? -1 : 1;
var exponent = ((bytes >> 23) & 0xFF) - 127;
var significand = (bytes & ~(-1 << 23));
if (exponent == 128)
return sign * ((significand) ? Number.NaN : Number.POSITIVE_INFINITY);

if (exponent == -127) {
if (significand == 0) return sign * 0.0;
exponent = -126;
significand /= (1 << 22);
}
else significand = (significand | (1 << 23)) / (1 << 23);

return sign * significand * Math.pow(2, exponent);
}

function Decode(fport, bytes) {

// Decode an uplink message from a buffer
// (array) of bytes to an object of fields.
var decoded = {};

var decodedBatch = {};

var lora = {};

// decoded.lora.port = port;

// Get raw payload
var bytes_len_ = bytes.length;
var temp_hex_str = ""

lora.payload = "";

for( var j = 0; j < bytes_len_; j++ ){
temp_hex_str = bytes[j].toString( 16 ).toUpperCase( );
if( temp_hex_str.length == 1 ){
temp_hex_str = "0" + temp_hex_str;
}
lora.payload += temp_hex_str;
}

var date = new Date();
var lDate = date.toISOString();

if (port === 125){
  //batch
  decodedBatch = !(bytes[0] & 0x01);

  //trame standard
  if (decodedBatch === false){
    decoded.zclheader = {};
    decoded.zclheader.report =  "standard";
    attributID = -1;
    cmdID = -1;
    clusterdID = -1;
    //endpoint
    decoded.zclheader.endpoint = ((bytes[0]&0xE0)>>5) | ((bytes[0]&0x06)<<2);
    //command ID
    cmdID =  bytes[1]; decoded.zclheader.cmdID = decimalToHex(cmdID,2);
    //Cluster ID
    clusterdID = bytes[2]*256 + bytes[3]; decoded.zclheader.clusterdID = decimalToHex(clusterdID,4);

        
    
    // decode report and read atrtribut response
    if((cmdID === 0x0a)|(cmdID === 0x8a)|(cmdID === 0x01)){
      stdData = {};
      var tab=[];

      //Attribut ID
      attributID = bytes[4]*256 + bytes[5]; decoded.zclheader.attributID = decimalToHex(attributID,4);

      if (cmdID === 0x8a) {
        decoded.zclheader.alarm = 1;
      }
      else {
        decoded.zclheader.alarm = 0;
      }
            
      //data index start
      if ((cmdID === 0x0a) | (cmdID === 0x8a)) index = 7;
      // if (cmdID === 0x01) {index = 8; decoded.zclheader.status = bytes[6];}
        
      //simple metering
		    if (  (clusterdID === 0x0052 ) & (attributID === 0x0000)) {
        tab.push({label: "ActiveEnergyWh", value: UintToInt(bytes[index+1]*256*256+bytes[index+2]*256+bytes[index+3],3)/1000, date: lDate});
        tab.push({label: "ReActiveEnergyVARh", value: UintToInt(bytes[index+4]*256*256+bytes[index+5]*256+bytes[index+6],3)/1000, date: lDate});
        tab.push({label: "NumberOfSample", value: (bytes[index+7]*256+bytes[index+8])/1000, date: lDate});
        tab.push({label: "ActivePowerW", value: UintToInt(bytes[index+9]*256+bytes[index+10],2)/1000, date: lDate});
        tab.push({label: "ReActivePowerVAR", value: UintToInt(bytes[index+11]*256+bytes[index+12],2)/1000, date: lDate});
		    }

      // on/off present value
		    if (  (clusterdID === 0x0006 ) & (attributID === 0x0000)) {

        state = bytes[index]; 
        if(state === 0) {
          tab.push({label: "Output"+(decoded.zclheader.endpoint+1), value: "OFF", date: lDate});
        }
        if(state === 1) {
          tab.push({label: "Output"+(decoded.zclheader.endpoint+1), value: "ON", date: lDate});
        }
      }

      // power quality
      if ((clusterdID === 0x8052) & (attributID === 0x0000)) {
        tab.push({label: "Freq", value: (bytes[index+1]*256+bytes[index+2]+22232)/1000, date: lDate});
        tab.push({label: "FreqMin", value: (bytes[index+3]*256+bytes[index+4]+22232)/1000, date: lDate});
        tab.push({label: "FreqMax", value: (bytes[index+5]*256+bytes[index+6]+22232)/1000, date: lDate});
        tab.push({label: "Vrms", value: (bytes[index+7]*256+bytes[index+8])/10, date: lDate});
        tab.push({label: "VrmsMin", value: (bytes[index+9]*256+bytes[index+10])/10, date: lDate});
        tab.push({label: "VrmsMax", value: (bytes[index+11]*256+bytes[index+12])/10, date: lDate});
        tab.push({label: "Vpeak", value: (bytes[index+13]*256+bytes[index+14])/10, date: lDate});
        tab.push({label: "VpeakMin", value: (bytes[index+15]*256+bytes[index+16])/10, date: lDate});
        tab.push({label: "VpeakMax", value: (bytes[index+17]*256+bytes[index+18])/10, date: lDate});
        tab.push({label: "OverVoltageNumber", value: bytes[index+19]*256+bytes[index+20], date: lDate});
        tab.push({label: "SagNumber", value: bytes[index+21]*256+bytes[index+22], date: lDate});
        tab.push({label: "BrownoutNumber", value: bytes[index+23]*256+bytes[index+24], date: lDate});
      }


      // lorawan message type
      if (  (clusterdID === 0x8004 ) & (attributID === 0x0000)) {

        if (bytes[index] === 1)
          stdData.message_type = "confirmed";
        if (bytes[index] === 0)
          stdData.message_type = "unconfirmed";
      }
            
      // lorawan retry
      if (  (clusterdID === 0x8004 ) & (attributID === 0x0001)) {
        stdData.nb_retry= bytes[index] ;
      }
            
      // lorawan reassociation
      if (  (clusterdID === 0x8004 ) & (attributID === 0x0002)) {
        stdData.period_in_minutes = bytes[index+1] *256+bytes[index+2];
        stdData.nb_err_frames = bytes[index+3] *256+bytes[index+4];
      }

      decoded.data = tab;
    }
        
    // decode configuration response
    if(cmdID === 0x07){
      //AttributID
      attributID = bytes[6]*256 + bytes[7];decoded.zclheader.attributID = decimalToHex(attributID,4);
      //status
      decoded.zclheader.status = bytes[4];
      //batch
      decoded.zclheader.decodedBatch = bytes[5];
    }

    //decode read configuration response
    if(cmdID === 0x09){
      //AttributID
      attributID = bytes[6]*256 + bytes[7];decoded.zclheader.attributID = decimalToHex(attributID,4);
      //status
      decoded.zclheader.status = bytes[4];
      //batch
      decoded.zclheader.decodedBatch = bytes[5];
      //AttributType
      decoded.zclheader.attribut_type = bytes[8];
      //min
      decoded.zclheader.min = {}
      if ((bytes[9] & 0x80) === 0x80) {
        decoded.zclheader.min.value = (bytes[9]-0x80)*256+bytes[10];
        decoded.zclheader.min.unity = "minutes";
      } 
      else {
        decoded.zclheader.min.value = bytes[9]*256+bytes[10];
        decoded.zclheader.min.unity = "seconds";
      }
      //max
      decoded.zclheader.max = {}
      if ((bytes[9] & 0x80) === 0x80) {
        decoded.zclheader.max.value = (bytes[9]-0x80)*256+bytes[10];
        decoded.zclheader.max.unity = "minutes";
      } 
      else {
        decoded.zclheader.max.value = bytes[9]*256+bytes[10];
        decoded.zclheader.max.unity = "seconds";
      }

    }   
  }
  else
  {
    var decoded = {};
    brData = (brUncompress(1,[{taglbl: 0,resol: 1, sampletype: 9,lblname: "ActiveEnergyWh"}], lora.payload, lDate))

    var data_length = brData["datas"].length;
    var tab=[];
    for (var i = 0; i < data_length; i++) {
      tab.push({label:brData["datas"][i]["data"]["label"] ,value:brData["datas"][i]["data"]["value"], date:brData["datas"][i]["date"]}) ;
    }

    decoded.data = tab;

    decoded.zclheader = {};
    decoded.zclheader.report = "batch";
    
  }
}

return decoded;
}

function decodeUplink(input) {

return {
data : Decoder(input.bytes, input.fPort),

warnings: [],
errors: []

};
}

function encodeDownlink(input) {
if (input.data.value == "OFF"){
value = 0x00;
}

if (input.data.value == "ON"){
value = 0x01;
}

if (input.data.value == "TOGGLE"){
value = 0x02;
}

bytes = [0x11, 0x50, 0x00, 0x06, value];

return {
bytes: bytes,
fPort: 125,
warnings: [],
errors: []
};
}

function decodeDownlink(input) {
return {
data: {
bytes: input.bytes
},
warnings: [],
errors: []
};
}

Error in the Modbus code

Hello,

I work for a French company that uses your devices and I am in charge of developing an application based on your code to interpret the information received.

I spotted an error in your code when I receive frames from your Modbus product. Indeed, the last byte of the payload is not interpreted by the program. The problem is at line 163 where the loop does not run until the last byte but ends just before.
There are 2 ways to correct the problem :

  • for( var j = 0; j <= decoded.data.size -1; j++ )
  • for( var j = 0; j < decoded.data.size; j++ )

I am available for more information.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.