Git Product home page Git Product logo

ex-1-nfa-to-dfa's Introduction

Ex-1-NFA-to-DFA

Exercise 1 - Conversion of Non-Deterministic Finite Automaton (NFA) To Deterministic Finite Automaton (DFA)

Register No: 212222040178

Date: 14.2.24

Aim

To write a C program for Conversion of Non-Deterministic Finite Automaton (NFA) To Deterministic Finite Automaton (DFA).

ALGORITHM

Step 1 : Take โˆˆ closure for the beginning state of NFA as beginning state of DFA.

Step 2 : Find the states that can be traversed from the present for each input symbol (union of transition value and their closures for each states of NFA present in current state of DFA).

Step 3 : If any new state is found take it as current state and repeat step 2.

Step 4 : Do repeat Step 2 and Step 3 until no new state present in DFA transition table.

Step 5 : Mark the states of DFA which contains final state of NFA as final states of DFA.

PROGRAM

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_LEN 100
char NFA_FILE[MAX_LEN];
char buffer[MAX_LEN];
int zz = 0;
// Structure to store DFA states and their
// status ( i.e new entry or already present)
struct DFA {
 char *states;
 int count;
} dfa;
int last_index = 0;
FILE *fp;
int symbols;
/* reset the hash map*/
void reset(int ar[], int size) {
 int i;
 // reset all the values of
 // the mapping array to zero
 for (i = 0; i < size; i++) {
 ar[i] = 0;
 }
}
// Check which States are present in the e-closure
/* map the states of NFA to a hash set*/
void check(int ar[], char S[]) {
 int i, j;
 // To parse the individual states of NFA
 int len = strlen(S);
 for (i = 0; i < len; i++) {
 // Set hash map for the position
 // of the states which is found
 j = ((int)(S[i]) - 65);
 ar[j]++;
 }
}
// To find new Closure States
void state(int ar[], int size, char S[]) {
 int j, k = 0;
 // Combine multiple states of NFA
 // to create new states of DFA
 for (j = 0; j < size; j++) {
 if (ar[j] != 0)
 S[k++] = (char)(65 + j);
 }
 // mark the end of the state
 S[k] = '\0';
}
// To pick the next closure from closure set
int closure(int ar[], int size) {
 int i;
 // check new closure is present or not
 for (i = 0; i < size; i++) {
 if (ar[i] == 1)
 return i;
 }
 return (100);
}
// Check new DFA states can be
// entered in DFA table or not
int indexing(struct DFA *dfa) {
 int i;
 for (i = 0; i < last_index; i++) {
 if (dfa[i].count == 0)
 return 1;
 }
 return -1;
}
/* To Display epsilon closure*/
void Display_closure(int states, int closure_ar[],
 char *closure_table[],
 char *NFA_TABLE[][symbols + 1],
 char *DFA_TABLE[][symbols]) {
 int i;
 for (i = 0; i < states; i++) {
 reset(closure_ar, states);
 closure_ar[i] = 2;
 // to neglect blank entry
 if (strcmp(&NFA_TABLE[i][symbols], "-") != 0) {
 // copy the NFA transition state to buffer
 strcpy(buffer, &NFA_TABLE[i][symbols]);
 check(closure_ar, buffer);
 int z = closure(closure_ar, states);
 // till closure get completely saturated
 while (z != 100)
 {
 	
 if (strcmp(&NFA_TABLE[z][symbols], "-") != 0) {
 strcpy(buffer, &NFA_TABLE[z][symbols]);
 // call the check function
 check(closure_ar, buffer);
 }
 closure_ar[z]++;
 z = closure(closure_ar, states);
 }
 }
 // print the e closure for every states of NFA
 printf("\n e-Closure (%c) :\t", (char)(65 + i));
 bzero((void *)buffer, MAX_LEN);
 state(closure_ar, states, buffer);
 strcpy(&closure_table[i], buffer);
 printf("%s\n", &closure_table[i]);
 }
}
/* To check New States in DFA */
int new_states(struct DFA *dfa, char S[]) {
 int i;
 // To check the current state is already
 // being used as a DFA state or not in
 // DFA transition table
 for (i = 0; i < last_index; i++) {
 if (strcmp(&dfa[i].states, S) == 0)
 return 0;
 }
 // push the new
 strcpy(&dfa[last_index++].states, S);
 // set the count for new states entered
 // to zero
 dfa[last_index - 1].count = 0;
 return 1;
}
// Transition function from NFA to DFA
// (generally union of closure operation )
void trans(char S[], int M, char *clsr_t[], int st,char *NFT[][symbols + 1], char TB[]) {
 int len = strlen(S);
 int i, j, k, g;
 int arr[st];
 int sz;
 reset(arr, st);
 char temp[MAX_LEN], temp2[MAX_LEN];
 char *buff;
 // Transition function from NFA to DFA
 for (i = 0; i < len; i++) {
 j = ((int)(S[i] - 65));
 strcpy(temp, &NFT[j][M]);
 if (strcmp(temp, "-") != 0) {
 sz = strlen(temp);
 g = 0;
 while (g < sz) {
 k = ((int)(temp[g] - 65));
 strcpy(temp2, &clsr_t[k]);
 check(arr, temp2);
 g++;
 }
 }
 }
 bzero((void *)temp, MAX_LEN);
 state(arr, st, temp);
 if (temp[0] != '\0') {
 strcpy(TB, temp);
 } else
 strcpy(TB, "-");
}
/* Display DFA transition state table*/
void Display_DFA(int last_index, struct DFA *dfa_states,
 char *DFA_TABLE[][symbols]) {
 int i, j;
 printf("\n\n**\n\n");
 printf("\t\t DFA TRANSITION STATE TABLE \t\t \n\n");
 printf("\n STATES OF DFA :\t\t");
 for (i = 1; i < last_index; i++)
 printf("%s, ", &dfa_states[i].states);
  printf("\n");
 printf("\n GIVEN SYMBOLS FOR DFA: \t");
 for (i = 0; i < symbols; i++)
 printf("%d, ", i);
 printf("\n\n");
 printf("STATES\t");
 for (i = 0; i < symbols; i++)
 printf("|%d\t", i);
 printf("\n");
 // display the DFA transition state table
 printf("--------+-----------------------\n");
 for (i = 0; i < zz; i++) {
 printf("%s\t", &dfa_states[i + 1].states);
 for (j = 0; j < symbols; j++) {
 printf("|%s \t", &DFA_TABLE[i][j]);
 }
 printf("\n");
 }
}
// Driver Code
int main() {
 int i, j, states;
 char T_buf[MAX_LEN];
 // creating an array dfa structures
 struct DFA *dfa_states = malloc(MAX_LEN * (sizeof(dfa)));
 states = 6, symbols = 2;
 printf("\n STATES OF NFA :\t\t");
 for (i = 0; i < states; i++)
 printf("%c, ", (char)(65 + i));
 printf("\n");
 printf("\n GIVEN SYMBOLS FOR NFA: \t");
 for (i = 0; i < symbols; i++)
 printf("%d, ", i);
 printf("eps");
 printf("\n\n");
char *NFA_TABLE[states][symbols + 1];
 // Hard coded input for NFA table
 char *DFA_TABLE[MAX_LEN][symbols];
 strcpy(&NFA_TABLE[0][0], "FC");
 strcpy(&NFA_TABLE[0][1], "-");
 strcpy(&NFA_TABLE[0][2], "BF");
 strcpy(&NFA_TABLE[1][0], "-");
 strcpy(&NFA_TABLE[1][1], "C");
 strcpy(&NFA_TABLE[1][2], "-");
 strcpy(&NFA_TABLE[2][0], "-");
 strcpy(&NFA_TABLE[2][1], "-");
 strcpy(&NFA_TABLE[2][2], "D");
 strcpy(&NFA_TABLE[3][0], "E");
 strcpy(&NFA_TABLE[3][1], "A");
 strcpy(&NFA_TABLE[3][2], "-");
 strcpy(&NFA_TABLE[4][0], "A");
 strcpy(&NFA_TABLE[4][1], "-");
 strcpy(&NFA_TABLE[4][2], "BF");
 strcpy(&NFA_TABLE[5][0], "-");
 strcpy(&NFA_TABLE[5][1], "-");
 strcpy(&NFA_TABLE[5][2], "-");
 printf("\n NFA STATE TRANSITION TABLE \n\n\n");
 printf("STATES\t");
 for (i = 0; i < symbols; i++)
 printf("|%d\t", i);
 printf("eps\n");
 // Displaying the matrix of NFA transition table
 printf("--------+------------------------------------\n");
 for (i = 0; i < states; i++) {
 printf("%c\t", (char)(65 + i));
 for (j = 0; j <= symbols; j++) {
 printf("|%s \t", &NFA_TABLE[i][j]);
 }
 printf("\n");
 }
 int closure_ar[states];
 char *closure_table[states];
 Display_closure(states, closure_ar, closure_table, NFA_TABLE, DFA_TABLE);
 strcpy(&dfa_states[last_index++].states, "-");
 dfa_states[last_index - 1].count = 1;
 bzero((void *)buffer, MAX_LEN);
 strcpy(buffer, &closure_table[0]);
 strcpy(&dfa_states[last_index++].states, buffer);
 int Sm = 1, ind = 1;
 int start_index = 1;
 // Filling up the DFA table with transition values
 // Till new states can be entered in DFA table
 while (ind != -1) {
 dfa_states[start_index].count = 1;
 Sm = 0;
 for (i = 0; i < symbols; i++) {
 trans(buffer, i, closure_table, states, NFA_TABLE, T_buf);
 // storing the new DFA state in buffer
 strcpy(&DFA_TABLE[zz][i], T_buf);
 // parameter to control new states
 Sm = Sm + new_states(dfa_states, T_buf);
 }
 ind = indexing(dfa_states);
 if (ind != -1)
 strcpy(buffer, &dfa_states[++start_index].states);
 zz++;
 }
 // display the DFA TABLE
 Display_DFA(last_index, dfa_states, DFA_TABLE);
 return 0;
}

OUTPUT

Screenshot 2024-04-03 092037

RESULT

The program was sucessfully converted from NFA to DFA.

ex-1-nfa-to-dfa's People

Contributors

ramachandransec avatar vijayshankar10 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.