Git Product home page Git Product logo

polynomialrings.jl's People

Contributors

dlfivefifty avatar tkluck avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

polynomialrings.jl's Issues

How to tell if polynomials are linearly independent in a quotient ring?

I have a vanishing ideal V and I'm trying to compute the dimension of degree d polynomials in the quotient ring ℚ[x,y] / V. For example, consider the circle:

julia> @ring! ℚ[x,y]
@ring(ℚ[x,y])

julia> V = 1-x^2-y^2
-x^2 + -y^2 + 1//1

julia> @test rem(y^2, V) == y^2 && div(y^2, V) == 0
Test Passed

julia> @test rem(x*y, V) == x*y && div(x*y, V) == 0
Test Passed

julia> @test div(x^2, V)  0 # lies in the span of the other two
Test Passed

That is, we know x^2 = 1-y^2 hence [1,x^2,y^2] are linearly dependent.

Is there a systematic way of doing this?

I see theres a QuotientRing type but no documentation...

rem(::Integer, x) errors

I would expect integers to behave like 0-degree polynomials but:

julia> @ring! ℚ[x,y]
@ring(ℚ[x,y])

julia> rem(1, x)
ERROR: MethodError: no method matching rem(::Int64, ::Generator{@variable(x), @ring(ℚ[x,y])})

Closest candidates are:
  rem(::Any, ::Any, ::RoundingMode{:ToZero})
   @ Base div.jl:97
  rem(::Any, ::Any, ::RoundingMode{:Down})
   @ Base div.jl:98
  rem(::Any, ::Any, ::RoundingMode{:Up})
   @ Base div.jl:99
  ...

Stacktrace:
 [1] top-level scope
   @ REPL[14]:1

TagBot trigger issue

This issue is used to trigger TagBot; feel free to unsubscribe.

If you haven't already, you should update your TagBot.yml to include issue comment triggers.
Please see this post on Discourse for instructions and more details.

If you'd like for me to do this for you, comment TagBot fix on this issue.
I'll open a PR within a few hours, please be patient!

Linear algebra doesn't work

I think we just need to overload iterate and adjoint to fix this:

julia> dot([x,y], [-y,x])
ERROR: MethodError: no method matching iterate(::@ring(ℚ[x,y]))

Closest candidates are:
  iterate(::Union{LinRange, StepRangeLen})
   @ Base range.jl:880
  iterate(::Union{LinRange, StepRangeLen}, ::Integer)
   @ Base range.jl:880
  iterate(::T) where T<:Union{Base.KeySet{<:Any, <:Dict}, Base.ValueIterator{<:Dict}}
   @ Base dict.jl:698
  ...

Stacktrace:
 [1] dot(x::@ring(ℚ[x,y]), y::@ring(ℚ[x,y]))
   @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/generic.jl:848
 [2] dot(x::Vector{@ring(ℚ[x,y])}, y::Vector{@ring(ℚ[x,y])})
   @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/generic.jl:886
 [3] top-level scope
   @ REPL[24]:1

julia> [x,y]'* [-y,x]
ERROR: MethodError: no method matching adjoint(::@ring(ℚ[x,y]))

Closest candidates are:
  adjoint(::Union{QR, LinearAlgebra.QRCompactWY, QRPivoted})
   @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/qr.jl:517
  adjoint(::Union{Cholesky, CholeskyPivoted})
   @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/cholesky.jl:556
  adjoint(::LQ)
   @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/lq.jl:138
  ...

Stacktrace:
  [1] getindex
    @ ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/adjtrans.jl:302 [inlined]
  [2] iterate
    @ ./abstractarray.jl:1220 [inlined]
  [3] iterate
    @ ./abstractarray.jl:1218 [inlined]
  [4] _zip_iterate_some
    @ ./iterators.jl:424 [inlined]
  [5] _zip_iterate_all
    @ ./iterators.jl:416 [inlined]
  [6] iterate
    @ ./iterators.jl:406 [inlined]
  [7] _foldl_impl
    @ ./reduce.jl:56 [inlined]
  [8] foldl_impl(op::Base.MappingRF{LinearAlgebra.var"#13#14", Base.BottomRF{typeof(Base.add_sum)}}, nt::Base._InitialValue, itr::Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}})
    @ Base ./reduce.jl:48
  [9] mapfoldl_impl(f::typeof(identity), op::typeof(Base.add_sum), nt::Base._InitialValue, itr::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"})
    @ Base ./reduce.jl:44
 [10] mapfoldl(f::Function, op::Function, itr::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"}; init::Base._InitialValue)
    @ Base ./reduce.jl:170
 [11] mapfoldl(f::Function, op::Function, itr::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"})
    @ Base ./reduce.jl:170
 [12] mapreduce(f::Function, op::Function, itr::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"}; kw::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ Base ./reduce.jl:302
 [13] mapreduce(f::Function, op::Function, itr::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"})
    @ Base ./reduce.jl:302
 [14] sum(f::Function, a::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"}; kw::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ Base ./reduce.jl:530
 [15] sum(f::Function, a::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"})
    @ Base ./reduce.jl:530
 [16] sum(a::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"}; kw::Base.Pairs{Symbol, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ Base ./reduce.jl:559
 [17] sum(a::Base.Generator{Base.Iterators.Zip{Tuple{Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, Vector{@ring(ℚ[x,y])}}}, LinearAlgebra.var"#13#14"})
    @ Base ./reduce.jl:559
 [18] _dot_nonrecursive(u::Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, v::Vector{@ring(ℚ[x,y])})
    @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/adjtrans.jl:428
 [19] *(u::Adjoint{Union{}, Vector{@ring(ℚ[x,y])}}, v::Vector{@ring(ℚ[x,y])})
    @ LinearAlgebra ~/Projects/julia-1.9/usr/share/julia/stdlib/v1.9/LinearAlgebra/src/adjtrans.jl:435
 [20] top-level scope
    @ REPL[25]:1

Why does QuotientRing use a dictionary of IDs?

The design of QuotientRing is very non-standard. At the moment it stores the ring in the type information as an ID to a dictionary, a pattern I've never seen in a Julia package before:

struct QuotientRing{P<:Polynomial, ID}

A more standard design would have just had a field pointing to the relevant ring.

Can you explain the motivation? Note the fact that the ID is in the type does not appear to be used anywhere.

`rem` errors over the reals

julia> @ring! ℝ[x,y]
@ring(ℝ[x,y])

julia> I = x*(1-x^2-y^2)
-x^3 + -x*y^2 + x

julia> rem(x*(1-x^2-y^2), I)
ERROR: MethodError: no method matching //(::BigFloat, ::BigFloat)

Closest candidates are:
  //(::AbstractArray, ::Number)
   @ Base rational.jl:82
  //(::PolynomialRings.QuotientRings.QuotientRing, ::Number)
   @ PolynomialRings ~/.julia/packages/PolynomialRings/JNZGk/src/CommutativeAlgebras/QuotientRings.jl:152
  //(::NumberField, ::Number)
   @ PolynomialRings ~/.julia/packages/PolynomialRings/JNZGk/src/CommutativeAlgebras/NumberFields.jl:343
  ...

Stacktrace:
  [1] maybe_div(a::(Term over BigFloat in @degrevlex(x > y)), b::(Term over BigFloat in @degrevlex(x > y)))
    @ PolynomialRings.Terms ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Terms.jl:108
  [2] #one_step_div!#4
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Operators.jl:96 [inlined]
  [3] one_step_div!
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Operators.jl:85 [inlined]
  [4] rem!(f::@ring(ℝ[x,y]), G::Vector{@ring(ℝ[x,y])}; order::typeof(@degrevlex(x > y)), redtype::PolynomialRings.Operators.Lead)
    @ PolynomialRings.Reductions ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:102
  [5] rem!
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:87 [inlined]
  [6] rem!(f::@ring(ℝ[x,y]), G::Vector{@ring(ℝ[x,y])}; order::typeof(@degrevlex(x > y)), redtype::PolynomialRings.Operators.Full)
    @ PolynomialRings.Reductions ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:89
  [7] rem!
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:87 [inlined]
  [8] #rem#6
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:351 [inlined]
  [9] rem
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:348 [inlined]
 [10] #rem#37
    @ ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:435 [inlined]
 [11] rem(f::@ring(ℝ[x,y]), g::@ring(ℝ[x,y]))
    @ PolynomialRings.Reductions ~/.julia/packages/PolynomialRings/JNZGk/src/PolynomialRings/Reductions.jl:434
 [12] top-level scope
    @ REPL[10]:1

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.