Git Product home page Git Product logo

miditok's Introduction

MidiTok

Python package to tokenize MIDI music files, presented at the ISMIR 2021 LBD.

MidiTok Logo

PyPI version fury.io Python 3.7 Documentation Status GitHub CI Codecov GitHub license Downloads Code style

Using Deep Learning with symbolic music ? MidiTok can take care of converting (tokenizing) your MIDI files into tokens, ready to be fed to models such as Transformer, for any generation, transcription or MIR task. MidiTok features most known MIDI tokenizations (e.g. REMI, Compound Word...), and is built around the idea that they all share common parameters and methods. It supports Byte Pair Encoding (BPE) and data augmentation.

Documentation: miditok.readthedocs.com

Install

pip install miditok

MidiTok uses MIDIToolkit, which itself uses Mido to read and write MIDI files, and BPE is backed by Hugging Face 🤗tokenizers for super-fast encoding.

Usage example

The most basic and useful methods are summarized here. And here is a simple notebook example showing how to use Hugging Face models to generate music, with MidiTok taking care of tokenizing MIDIs.

from miditok import REMI, TokenizerConfig
from miditoolkit import MidiFile
from pathlib import Path

# Creating a multitrack tokenizer configuration, read the doc to explore other parameters
config = TokenizerConfig(nb_velocities=16, use_chords=True, use_programs=True)
tokenizer = REMI(config)

# Loads a midi, converts to tokens, and back to a MIDI
midi = MidiFile('path/to/your_midi.mid')
tokens = tokenizer(midi)  # calling the tokenizer will automatically detect MIDIs, paths and tokens
converted_back_midi = tokenizer(tokens)  # PyTorch / Tensorflow / Numpy tensors supported

# Tokenize a whole dataset and save it at Json files
midi_paths = list(Path("path", "to", "dataset").glob("**/*.mid"))
data_augmentation_offsets = [2, 1, 1]  # data augmentation on 2 pitch octaves, 1 velocity and 1 duration values
tokenizer.tokenize_midi_dataset(midi_paths, Path("path", "to", "tokens_noBPE"),
                                data_augment_offsets=data_augmentation_offsets)

# Constructs the vocabulary with BPE, from the token files
tokenizer.learn_bpe(
    vocab_size=10000,
    tokens_paths=list(Path("path", "to", "tokens_noBPE").glob("**/*.json")),
    start_from_empty_voc=False,
)

# Saving our tokenizer, to retrieve it back later with the load_params method
tokenizer.save_params(Path("path", "to", "save", "tokenizer.json"))
# And pushing it to the Hugging Face hub (you can download it back with .from_pretrained)
tokenizer.push_to_hub("username/model-name", private=True, token="your_hugging_face_token")

# Applies BPE to the previous tokens
tokenizer.apply_bpe_to_dataset(Path('path', 'to', 'tokens_noBPE'), Path('path', 'to', 'tokens_BPE'))

Tokenizations

MidiTok implements the tokenizations: (links to original papers)

You can find short presentations in the documentation.

Contributions

Contributions are gratefully welcomed, feel free to open an issue or send a PR if you want to add a tokenization or speed up the code. You can read the contribution guide for details.

Todos

  • Extend unimplemented additional tokens to all compatible tokenizations;
  • Control Change messages;
  • Option to represent pitch values as pitch intervals, as it seems to improve performances;
  • Speeding up MIDI read / load (using a Rust / C++ io library + Python binding ?);
  • Data augmentation on duration values at the MIDI level.

Citation

If you use MidiTok for your research, a citation in your manuscript would be gladly appreciated. ❤️

[MidiTok paper] [MidiTok original ISMIR publication]

@inproceedings{miditok2021,
    title={{MidiTok}: A Python package for {MIDI} file tokenization},
    author={Fradet, Nathan and Briot, Jean-Pierre and Chhel, Fabien and El Fallah Seghrouchni, Amal and Gutowski, Nicolas},
    booktitle={Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference},
    year={2021},
    url={https://archives.ismir.net/ismir2021/latebreaking/000005.pdf},
}

The BibTeX citations of all tokenizations can be found in the documentation

Acknowledgments

Special thanks to all the contributors. We acknowledge Aubay, the LIP6, LERIA and ESEO for the initial financing and support.

miditok's People

Contributors

adamoudad avatar atsukoba avatar caenopy avatar dinhviettoanle avatar eltociear avatar gfggithubleet avatar ilya16 avatar kianmeng avatar ms3744 avatar natooz avatar nturusin avatar shresthasurav avatar thefznkhan avatar tingled avatar zxus avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.