Git Product home page Git Product logo

taugames / f3d Goto Github PK

View Code? Open in Web Editor NEW

This project forked from f3d-app/f3d

0.0 0.0 0.0 12.96 MB

A fast and minimalist 3D viewer. This is a mirror of the https://gitlab.kitware.com/f3d/f3d/ repository in order to host a page. DO NOT SUBMIT PR HERE.

Home Page: https://kitware.github.io/F3D/

License: BSD 3-Clause "New" or "Revised" License

CMake 13.41% Game Maker Language 0.04% Roff 0.04% Shell 0.25% C++ 85.95% Objective-C++ 0.31%

f3d's Introduction

F3D Logo

F3D - Fast and minimalist 3D viewer

By Kitware SAS, 2019-2021

F3D (pronounced /fɛd/) is a VTK-based 3D viewer following the KISS principle, so it is minimalist, efficient, has no GUI, has simple interaction mechanisms and is fully controllable using arguments in the command line.

F3D is open-source and cross-platform (tested on Windows, Linux and macOS). It supports a range of file formats (including animated glTF, stl, step, ply, obj), and provides numerous rendering and texturing options.

A typical render by F3D

Animation of a glTF file within F3D

A direct scalars render by F3D

How to use

There are 4 main ways to use F3D:

  • By running F3D from a terminal with a set of command-line options.
  • By running F3D directly and then dragging and dropping files into it to open them.
  • By using F3D as an "Open with" program with specific file types.
  • As a thumbnailer for all supported file formats with certain file managers.

Installation

You can find the release binary packages for Windows, Linux and macOS on the Release page. Alternatively, you can build it yourself following the build guide below.

You can also find packages for the following operating systems:

Ubuntu

Available on OpenSuse OBS.

OpenSuse

Available on OpenSuse OBS.

Arch Linux

Available in the AUR.

FreeBSD

Avaiable in FreshPORTS.

DragonFly BSD

Available in DPorts.

MacOS Brew

Available in Homebrew.

NixOS

Available in nixpkgs.

Build

Dependencies

  • CMake >= 3.1.
  • VTK >= 9.0.0 (optionally with raytracing capabilities to enable OSPray rendering).
  • A C++11 compiler.
  • A CMake-compatible build system (Visual Studio, XCode, Ninja, Make, etc.).

Configuration and building

Configure and generate the project with CMake by providing the following CMake options:

  • VTK_DIR: Path to a build or install directory of VTK.
  • BUILD_TESTING: Enable the tests.
  • F3D_MACOS_BUNDLE: On macOS, build a .app bundle.
  • F3D_WINDOWS_GUI: On Windows, build a Win32 application (without console).

Some modules depending on external libraries can be optionally enabled with the following CMake variables:

  • F3D_MODULE_EXODUS: Support for ExodusII (.ex2) file format. Requires that VTK has been built with IOExodus module (and hdf5). Enabled by default.
  • F3D_MODULE_RAYTRACING: Support for raytracing rendering. Requires that VTK has been built with OSPRay. Disabled by default.
  • F3D_MODULE_OCCT: Support for STEP and IGES file formats. Requires OpenCASCADE. Disabled by default.

Then build the software using your build system.

File formats

Here is the list of supported file formats:

  • .vtk : the legacy VTK format
  • .vt[p|u|r|i|s|m] : XML based VTK formats
  • .ply : Polygon File format
  • .stl : Standard Triangle Language format
  • .dcm : DICOM file format
  • .nrrd/.nhrd : "nearly raw raster data" file format
  • .mhd/.mha : MetaHeader MetaIO file format
  • .tif/.tiff : TIFF 2D/3D file format
  • .ex2/.e/.exo/.g : Exodus 2 file format
  • .gml : CityGML file format
  • .pts : Point Cloud file format
  • .step/.stp : CAD STEP exchange ISO format
  • .iges/.igs : CAD Initial Graphics Exchange Specification format
  • .obj : Wavefront OBJ file format (full scene)
  • .gltf/.glb : GL Transmission Format (full scene)
  • .3ds : Autodesk 3D Studio file format (full scene)
  • .wrl : VRML file format (full scene)

Scene construction

The full scene formats (gltf/glb, 3ds, wrl, obj) contain not only geometry, but also some scene information like lights, cameras, actors in the scene, as well as texture properties. By default, all this information will be loaded from the file and displayed. For file formats that do not support it, a default scene will be created.

Options

Generic Options

Options Description
--input=<file> The input file or files to read, can also be provided as a positional argument.
--output=<png file> Instead of showing a render view and render into it, render directly into a png file. When used with ref option, only outputs on failure
--no-background Output file is saved with a transparent background. Ignored when using ref option.
-h, --help Print help.
--verbose Enable verbose mode, providing more information about the loaded data in the console output.
--no-render Verbose mode without any rendering for the first provided file, to recover information about a file.
--quiet Enable quiet mode, which superseed any verbose options. No console output will be generated at all.
--version Show version information.
-x, --axis Show axes as a trihedron in the scene.
-g, --grid Show a grid aligned with the XZ plane.
-e, --edges Show the cell edges.
-k, --trackball Enable trackball interaction.
--progress Show a progress bar when loading the file.
--up Define the Up direction (default: +Y)
--animation-index Select the animation to show.
Any negative value means all animations.
The default scene always has a single animation if any.
--geometry-only For certain full scene file formats (gltf/glb and obj),
reads only the geometry from the file and use default scene construction instead.
--dry-run Do not read the configuration file but consider only the command line options
--config Read a provided configuration file instead of default one

Material options

Options Default Description
-o, --point-sprites Show sphere points sprites instead of the geometry.
--point-size 10.0 Set the size of points when showing vertices and point sprites.
--line-width 1.0 Set the width of lines when showing edges.
--color=<R,G,B> 1.0, 1.0, 1.0 Set a color on the geometry.
This only makes sense when using the default scene.
--opacity=<opacity> 1.0 Set opacity on the geometry.
This only makes sense when using the default scene. Usually used with Depth Peeling option.
--roughness=<roughness> 0.3 Set the roughness coefficient on the geometry (0.0-1.0).
This only makes sense when using the default scene.
--metallic=<metallic> 0.0 Set the metallic coefficient on the geometry (0.0-1.0).
This only makes sense when using the default scene.
--hrdi=<file path> Set the HDRI image used to create the environment.
The environment act as a light source and is reflected on the material.
Valid file format are hdr, png, jpg, pnm, tiff, bmp.
--texture-base-color=<file path> Path to a texture file that sets the color of the object.
--texture-material=<file path> Path to a texture file that sets the Occlusion, Roughness and Metallic values of the object.
--texture-emissive=<file path> Path to a texture file that sets the emitted light of the object.
--emissive-factor=<R,G,B> 1.0, 1.0, 1.0 Emissive factor. This value is multiplied with the emissive color when an emissive texture is present.
--texture-normal=<file path> Path to a texture file that sets the normal map of the object.
--normal-scale=<normal_scale> 1.0 Normal scale affects the strength of the normal deviation from the normal texture.

PostFX (OpenGL) options

Options Description
-p, --depth-peeling Enable depth peeling. This is a technique used to correctly render translucent objects.
-q, --ssao Enable Screen-Space Ambient Occlusion. This is a technique used to improve the depth perception of the object.
-a, --fxaa Enable Fast Approximate Anti-Aliasing. This technique is used to reduce aliasing.
-t, --tone-mapping Enable generic filmic Tone Mapping Pass. This technique is used to map colors properly to the monitor colors.

Camera configuration options

Options Description
--camera-index Select the scene camera to use.
Any negative value means custom camera.
The default scene always has a custom camera.
--camera-position=<X,Y,Z> The position of the camera. Automatically computed or recovered from the file if not provided.
--camera-focal-point=<X,Y,Z> The focal point of the camera. Automatically computed or recovered from the file if not provided.
--camera-view-up=<X,Y,Z> The focal point of the camera. Will be orthogonalized even when provided. Automatically computed or recovered from the file if not provided.
--camera-view-angle=<angle> The view angle of the camera, non-zero value in degrees. Automatically computed or recovered from the file if not provided.

Raytracing options

Options Default Description
-r, --raytracing Enable OSPRay raytracing. Requires OSPRay raytracing to be enabled in the linked VTK dependency.
--samples=<samples> 5 The number of samples per pixel. It only makes sense with raytracing enabled.
-d, --denoise Denoise the image. It only makes sense with raytracing enabled.

Scientific visualization options

Options Default Description
-s, --scalars=<array_name> Color by a specific scalar array present in the file. If no array_name is provided, one will be picked if any are available.
This only makes sense when using the default scene.
Use verbose to recover the usable array names.
-y, --comp=<comp_index> -1 Specify the component from the scalar array to color with.
Use with the scalar option. -1 means magnitude. -2 or the short option, -y, means direct values.
When using direct values, components are used as L, LA, RGB, RGBA values depending on the number of components.
-c, --cells Specify that the scalar array is to be found on the cells instead of on the points.
Use with the scalar option.
--range=<min,max> Set a custom range for the coloring by the array.
Use with the scalar option.
-b, --bar Show scalar bar of the coloring by array.
Use with the scalar option.
--colormap=<color_list> Set a custom colormap for the coloring.
This is a list of colors in the format val1,red1,green1,blue1,...,valN,redN,greenN,blueN
where all values are in the range (0,1).
Use with the scalar option.
-v, --volume Enable volume rendering. It is only available for 3D image data (vti, dcm, nrrd, mhd files) and will display nothing with other default scene formats.
-i, --inverse Inverse the linear opacity function. Only makes sense with volume rendering.

Testing options

Options Description
--ref=<png file> Reference image to compare with for testing purposes. Use with output option to generate new baselines and diff images.
--ref-threshold=<threshold> Testing threshold to trigger a test failure or success.
--interaction-test-record=<log file> Path to an interaction log file to record interaction events to.
--interaction-test-play=<log file> Path to an interaction log file to play interactions events from when loading a file.

Window options

Options Default Description
--bg-color=<R,G,B> 0.2, 0.2, 0.2 Set the window background color.
Ignored if hdri is set.
--resolution=<width,height> 1000, 600 Set the window resolution.
-z, --fps Display a frame per second counter.
-n, --filename Display the name of the file.
-m, --metadata Display the metadata.
This only makes sense when using the default scene.
-f, --fullscreen Display in fullscreen.
-u, --blur-background Blur background.
This only makes sense when using a HDRI.

Rendering precedence

Some rendering options are not compatible between them, here is the precedence order if several are provided:

  • Raytracing (-r)
  • Volume (-v)
  • Point Sprites (-o)

Interaction

Simple interaction with the displayed data is possible directly within the window. It is as follows:

  • Click and drag with the left mouse button to rotate around the focal point of the camera.
  • Hold Shift then Click and drag horizontally with the right mouse button to rotate the HDRI.
  • Click and drag vertically with the right mouse button to zoom in/out.
  • Move the mouse wheel to zoom in/out.
  • Click and drag with the middle mouse button to translate the camera.
  • Drag and drop a file or directory into the F3D window to load it

Note: When playing an animation with a scene camera, camera interactions are locked.

The coloring can be controlled directly by pressing the following hotkeys:

  • C: cycle between coloring with array from point data and from cell data.
  • S: cycle the array to color with.
  • Y: cycle the component of the array to color with.

See the [coloring cycle](#Cycling Coloring) section for more info.

Other options can be toggled directly by pressing the following hotkeys:

  • B: display of the scalar bar, only when coloring and not using direct scalars.
  • V: volume rendering.
  • I: opacity function inversion during volume rendering.
  • O: point sprites rendering.
  • P: depth peeling.
  • Q: Screen-Space Ambient Occlusion.
  • A: Fast Approximate Anti-Aliasing.
  • T: tone mapping.
  • E: the display of cell edges.
  • X: the trihedral axes display.
  • G: the XZ grid display.
  • N: the display of the file name.
  • M: the display of the metadata if exists.
  • Z: the display of the FPS counter.
  • R: raytracing.
  • D: the denoiser when raytracing.
  • F: full screen.
  • U: background blur.
  • K: trackball interaction mode.

Note that some hotkeys can be available or not depending on the file being loaded and the F3D configuration.

Other hotkeys are available:

  • H: key to toggle the display of a cheat sheet showing all these hotkeys and their statuses.
  • ?: key to dump camera state to the terminal.
  • ESC: close the window and quit F3D.
  • ENTER: reset the camera to its initial parameters.
  • SPACE: play the animation if any.
  • LEFT: load the previous file if any.
  • RIGHT: load the next file if any.
  • UP: reload the current file.

Cycling Coloring

When using the default scene, the following hotkeys let you cycle the coloring of the data:

  • C: cycle between point data and cell data - field data is not supported.
  • S: cycle the array available on the currently selected data, skipping array not containing numeric data. It will loop back to not coloring unless using volume rendering.
  • Y: cycle the component available on the currently selected array, looping to -2 for direct scalars rendering if the array contains 4 or less components, -1 otherwise.

When changing the array, the component in use will be kept if valid with the new array, if not it will be reset to 0 when coloring with an invalid higher than zero component, and to -1 when using direct scalars rendering with an array having more than 4 components.

When changing the type of data to color with, the index of the array within the data will be kept if valid with the new data. If not, it will cycle until a valid array is found. After that, the component will be checked as well.

Configuration file

Almost all the command-line options can be controlled using a configuration file. This configuration file uses the "long" version of the options in a JSON formatted file to provide default values for these options.

These options can be organized by block using a regular expression for each block in order to provide different default values for the different filetypes.

Using a command-line option will override the corresponding value in the config file. A typical config file may look like this:

{
   ".*": {
       "resolution": "1200,800",
       "bg-color": "0.7,0.7,0.7",
       "color": "0.5,0.1,0.1",
       "fxaa": true,
       "timer": true,
       "progress": true,
       "axis": true,
       "bar": true,
       "verbose": true,
       "roughness": 0.2,
       "grid": true
   },
   ".*vt.": {
       "edges": true
   },
   ".*gl(tf|b)": {
       "raytracing": true,
       "denoise": true,
       "samples": 3
   },
   ".*mhd": {
       "volume": true
   }
}

Here, the first block defines a basic configuration with many desired options for all files. The second block specifies that all files ending with vt., eg: vtk, vtp, vtu, ... will be shown with edges visibility turned on. The third block specifies raytracing usage for .gltf and .glb files. The last block specifies that volume rendering should be used with .mhd files.

The following command-line options
cannot
be set via config file: help, version, config, dry-run, no-render, inputs, output and all testing options.

Boolean options that have been turned on in the configuration file can be turned off in the command line if needed, eg: --point-sprites=false

The configuration file possible locations depends on your operating system. They are considered in the below order and only the first found will be used.

  • Linux: /etc/f3d/config.json, [install_dir]/config.json, ${XDG_CONFIG_HOME}/.config/f3d/config.json, ~/.config/f3d/config.json
  • Windows: [install_dir]\config.json, %APPDATA%\f3d\config.json
  • macOS: /etc/f3d/config.json, f3d.app/Contents/Resources/config.json, [install_dir]/config.json, ~/.config/f3d/config.json

If you are using the releases, a default configuration file is provided when installing F3D. On Linux, it will be installed in /etc/f3d/, on Windows, it will be installed in the install directory, on macOS, it will be installed in the bundle.

Thumbnailer

F3D can be used as a thumbnailer in certain cases

Linux

During instalation, F3D will install mime types files as defined by the XDG standard and a thumbnailer file as specified here. Many file managers use this mechanism, including nautilus, thunar, pcmanfm and caja. Make sure to update the mime types database using update-mime-database.

Known limitations

  • No categorical generic field data rendering support.
  • No string array categorical rendering support.
  • No support for specifying manual lighting in the default scene.
  • Pressing the z hotkey to display the FPS timer triggers a double render.
  • Multiblock (.vtm, .gml) support is partial, non-surfacic data will be converted into surfaces.
  • Animation support with full scene data format require VTK >= 9.0.20201016.
  • Full drag and drop support require VTK >= 9.0.20210620
  • Escape interaction events cannot be recorded.
  • Drag and drop interaction cannot be recorded nor played back.

Troubleshooting

General

I have built F3D with raytracing support but the denoiser is not working.

Be sure that VTK has been built with OpenImageDenoise support (VTKOSPRAY_ENABLE_DENOISER option).

Linux

Thumbnails are not working in my file manager.

  • Check that your file manager supports the thumbnailer mechanism.
  • Check that you have updated your mime type database.
  • If all fails, remove your .cache user dir and check that pcmanfm thumbnails are working.
  • If they are working, then it is an issue specific to your file manager.
  • If only a few format have working thumbnails, then it is an issue with mime types
  • If no formats have working thumbnails, then it is an issue with the f3d.thumbnailer file

Windows

I use F3D in a VM, the application fails to launch.

OpenGL applications like F3D can have issues when launched from a guest Windows because the access to the GPU is restricted. You can try to use a software implementation of OpenGL, called Mesa.

  • Download the latest release-msvc.
  • copy x64/OpenGL32.dll and x64/libglapi.dll in the same folder as f3d.exe.
  • set the environment variable MESA_GL_VERSION_OVERRIDE to 4.5.
  • run f3d.exe.

I run f3d from the command prompt and my Unicode characters are not displayed properly.

Set the codepage to UTF-8, run chcp 65001.

f3d's People

Contributors

mwestphal avatar meakk avatar jpouderoux avatar mzf-guest avatar hlngrandmontagne avatar michaelmigliore avatar charlesgueunet avatar bradking avatar caioaao avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.