Git Product home page Git Product logo

scopfunctions's Introduction

SCOPfunctions

An R package of functions for single cell -omics analysis. Fits into Seurat workflow.

Install

Install using devtools:

devtools::install_github("CBMR-Single-Cell-Omics-Platform/SCOPfunctions")

install manually

git clone https://www.github.com/CBMR-Single-Cell-Omics-Platform/SCOPfunctions.git 

then from R:

install.packages("./SCOPfunctions", type="source", repos=NULL)

Usage

library("SCOPfunctions")
library("Seurat")

Download the example data used in the Seurat hashing vignette at https://satijalab.org/seurat/archive/v3.1/hashing_vignette.html

Follow the initial steps of the hashing vignette up till and including the HTO normalization

Preprocess

Generate an area plot showing how proportions of singlets, doublets and negatives vary with the positive quantile

p_quantile = SCOPfunctions::prep_HTO_q_area_plot(
  seurat_obj=pbmc.hashtag,
  vec_range_quantile=seq(0.8,0.99,0.01),
  n_cores_max=Inf
) 

areaplot infer intra-hash doublets

# First demultiplex hashtags 
q = 0.98
pbmc.hashtag = Seurat::HTOdemux(pbmc.hashtag,assay = "HTO", positive.quantile = q)

# use inter-hash doublets to infer intra-hash doublets
pbmc.hashtag = SCOPfunctions::prep_intrahash_doub(
  seurat_obj=pbmc.hashtag,
  assay = "RNA",
  npcs=20,
  randomSeed = 12345
) 

Do QC on RNA assay

pbmc.hashtag  = prep_qc_rna(
  seurat_obj=pbmc.hashtag,
  assay = "RNA"
  )

Differential expression


# first find clusters (after normalizing the RNA, finding variable features and scaling the data - not shown)
pbmc.hashtag <- FindNeighbors(pbmc.hashtag, reduction = "pca", dims = 1:20)
pbmc.hashtag <- FindClusters(pbmc.hashtag, resolution = 10, verbose = FALSE)

# find DE genes for cluster 0
df_DE = SCOPfunctions::DE_MAST_RE_seurat(
  object=pbmc.hashtag,
  random_effect.vars="hash.ID",
  test.use = "MAST",
  ident.1 = "0",
  group.by = "seurat_clusters"
)

find the activity values for a geneset


# as an example, just use the top DE genes for cluster 0
vec_geneWeights <- seq(from = 1, to = 0.1, by = -0.1)
vec_geneWeights <- vec_geneWeights/sum(vec_geneWeights)

names(vec_geneWeights) =  head(rownames(df_DE), 10)

pbmc.hashtag$my_geneset_embeddings <- geneset_embed(
  mat_datExpr = as.matrix(GetAssayData(pbmc.hashtag, slot="scale.data", assay="SCT")),
  vec_geneWeights=vec_geneWeights,
  min_feats_present = 5)

find the activity values for a list of genesets


pbmc.hashtag <- geneset_embed_list_seurat(
  seurat_obj = pbmc.hashtag,
  list_vec_geneWeights=list_vec_geneWeights,
  slot="scale.data",
  assay="SCT",
  min_feats_present = 5,
  n_cores_max = Inf)

Plot results

plot the distribution of cell clusters in different samples

plot_barIdentGroup(seurat_obj=pbmc.hashtag,
                    var_ident="sample_ID",
                    var_group="cluster",
                    vec_group_colors=NULL,
                    f_color=colorRampPalette(brewer.pal(n=11, name="RdYlBu")),
                    do_plot = F)

barplot

plot a cluster * feature grid of gene expression violin plots

# Here we just use the top variable genes, but normally we would use cluster marker genes
plot_vlnGrid(seurat_obj,
              slot="data",
              var_group="cluster",
              vec_features=head(VariableFeatures(seurat_obj),n=15),
              vec_group_colors=NULL,
              f_color = colorRampPalette(brewer.pal(n=11, name="RdYlBu")))

vlnplot

make a network plot of a set of co-expressed features

SCOPfunctions::plot_network(
  mat_datExpr=as.matrix(GetAssayData(seurat_obj, slot="data")),
  vec_geneImportance=vec_geneImportance,
  vec_genes_highlight=c(),
  n_max_genes=50,
  igraph_algorithm = "drl",
  fontface_labels="bold.italic",
  color_edge = "grey70",
  edge_thickness = 1)

networkplot

Contribute

Issues and pull requests are welcome! All contributions should be in line with the usethis code of conduct. This package uses the methods and R tools set out in R packages. All Pull Requests should follow the tidyverse style guide.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.