Git Product home page Git Product logo

rustquant's Introduction

License GitHub Workflow Status Crates.io GitHub Repo stars Crates.io Codecov Dependencies

Rust library for quantitative finance tools.

๐ŸŽฏ I want to hit a stable and legitimate v1.0.0 by the end of 2023, so any and all feedback, suggestions, or contributions are strongly welcomed!

Contact: [email protected]

Disclaimer: This is currently a free-time project and not a professional financial software library. Nothing in this library should be taken as financial advice, and I do not recommend you to use it for trading or making financial decisions.

๐Ÿ“ฐ Latest features

See CHANGELOG.md for a full list of changes.

Table of Contents

  1. Automatic Differentiation - Reverse (Adjoint) Mode Automatic Differentiation.
  2. Data - Methods for reading and writing data from/to various sources (CSV, JSON, PARQUET). Can also download data from Yahoo! Finance.
  3. Distributions - PDFs, CDFs, MGFs, CFs, and other ditrubution related functions for common distributions.
  4. Instruments - Various implementations for instruments like Bonds and Options, and the pricing of them. Others coming in the future (swaps, futures, CDSs, etc).
  5. Mathematics - Numerical integration (double-exponential quadrature), root finding (gradient descent, Newton-Raphson), and risk-reward metrics.
  6. Machine Learning - Currently only linear regression is implemented (and working on logistic regression). More to come in the future.
  7. Money - Implementations for Cashflows, Currencies, and Quotes, and similar objects.
  8. Stochastic Processes - Can generate Brownian Motion (standard, arithmetric and geometric) and various short-rate models (CIR, OU, Vasicek, Hull-White, etc).
  9. Time and Dates - Time and date functionality. Mostly the DayCounter for pricing options and bonds.
  10. Utilities/Helpers - Various helper functions and macros.
  11. How-tos - How to do various things with RustQuant.
  12. References - References and resources used for this project.

๐Ÿ”— Automatic Differentiation

Currently only gradients can be computed. Suggestions on how to extend the functionality to Hessian matrices are definitely welcome.

Additionally, only functions $f: \mathbb{R}^n \rightarrow \mathbb{R}$ (scalar output) are supported. However, you can manually apply the differentiation to multiple functions that could represent a vector output.

  • Reverse (Adjoint) Mode
    • Implementation via Operator and Function Overloading.
    • Useful when number of outputs is smaller than number of inputs.
      • i.e for functions $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$, where $m \ll n$
  • Forward (Tangent) Mode
    • Implementation via Dual Numbers.
    • Useful when number of outputs is larger than number of inputs.
      • i.e. for functions $f:\mathbb{R}^n \rightarrow \mathbb{R}^m$, where $m \gg n$
use RustQuant::autodiff::*;

fn main() {
    // Create a new Graph to store the computations.
    let g = Graph::new();

    // Assign variables.
    let x = g.var(69.);
    let y = g.var(420.);

    // Define a function.
    let f = {
      let a = x.powi(2);
      let b = y.powi(2);

      a + b + (x * y).exp()
    };

    // Accumulate the gradient.
    let gradient = f.accumulate();

    println!("Function = {}", f);
    println!("Gradient = {:?}", gradient.wrt([x, y]));
}

๐Ÿ“Š Data

You can download data from Yahoo! Finance into a Polars DataFrame.

use RustQuant::data::*;
use time::macros::date;

fn main() {
    // New YahooFinanceData instance. 
    // By default, date range is: 1970-01-01 to present. 
    let mut yfd = YahooFinanceData::new("AAPL".to_string());

    // Can specify custom dates (optional). 
    yfd.set_start_date(time::macros::datetime!(2019 - 01 - 01 0:00 UTC));
    yfd.set_end_date(time::macros::datetime!(2020 - 01 - 01 0:00 UTC));

    // Download the historical data. 
    yfd.get_price_history();

    println!("Apple's quotes: {:?}", yfd.price_history)
}
Apple's quotes: Some(shape: (252, 7)
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ date       โ”† open      โ”† high      โ”† low       โ”† close     โ”† volume     โ”† adjusted  โ”‚
โ”‚ ---        โ”† ---       โ”† ---       โ”† ---       โ”† ---       โ”† ---        โ”† ---       โ”‚
โ”‚ date       โ”† f64       โ”† f64       โ”† f64       โ”† f64       โ”† f64        โ”† f64       โ”‚
โ•žโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ชโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ก
โ”‚ 2019-01-02 โ”† 38.7225   โ”† 39.712502 โ”† 38.557499 โ”† 39.48     โ”† 1.481588e8 โ”† 37.994499 โ”‚
โ”‚ 2019-01-03 โ”† 35.994999 โ”† 36.43     โ”† 35.5      โ”† 35.547501 โ”† 3.652488e8 โ”† 34.209969 โ”‚
โ”‚ 2019-01-04 โ”† 36.1325   โ”† 37.137501 โ”† 35.950001 โ”† 37.064999 โ”† 2.344284e8 โ”† 35.670372 โ”‚
โ”‚ 2019-01-07 โ”† 37.174999 โ”† 37.2075   โ”† 36.474998 โ”† 36.982498 โ”† 2.191112e8 โ”† 35.590965 โ”‚
โ”‚ โ€ฆ          โ”† โ€ฆ         โ”† โ€ฆ         โ”† โ€ฆ         โ”† โ€ฆ         โ”† โ€ฆ          โ”† โ€ฆ         โ”‚
โ”‚ 2019-12-26 โ”† 71.205002 โ”† 72.495003 โ”† 71.175003 โ”† 72.477501 โ”† 9.31212e7  โ”† 70.798401 โ”‚
โ”‚ 2019-12-27 โ”† 72.779999 โ”† 73.4925   โ”† 72.029999 โ”† 72.449997 โ”† 1.46266e8  โ”† 70.771545 โ”‚
โ”‚ 2019-12-30 โ”† 72.364998 โ”† 73.172501 โ”† 71.305    โ”† 72.879997 โ”† 1.441144e8 โ”† 71.191582 โ”‚
โ”‚ 2019-12-31 โ”† 72.482498 โ”† 73.419998 โ”† 72.379997 โ”† 73.412498 โ”† 1.008056e8 โ”† 71.711739 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜)

Read/write data

use RustQuant::data::*;

fn main() {
    // New `Data` instance.
    let mut data = Data::new(
        format: DataFormat::CSV, // Can also be JSON or PARQUET.
        path: String::from("./file/path/read.csv")
    )

    // Read from the given file. 
    data.read().unwrap();

    // New path to write the data to. 
    data.path = String::from("./file/path/write.csv")
    data.write().unwrap();

    println!("{:?}", data.data)
}

๐Ÿ“Š Distributions

Probability density/mass functions, distribution functions, characteristic functions, etc.

  • Gaussian
  • Bernoulli
  • Binomial
  • Poisson
  • Uniform (discrete & continuous)
  • Chi-Squared
  • Gamma
  • Exponential

๐Ÿ“ˆ Instruments

๐Ÿ“‰ Bonds

  • Prices:
    • The Vasicek Model
    • The Cox, Ingersoll, and Ross Model
    • The Hullโ€“White (One-Factor) Model
    • The Rendleman and Bartter Model
    • The Hoโ€“Lee Model
    • The Blackโ€“Dermanโ€“Toy Model
    • The Blackโ€“Karasinski Model
  • Duration
  • Convexity

๐Ÿ’ธ Option Pricing

  • Closed-form price solutions:

    • Heston Model
    • Barrier
    • European
    • Greeks/Sensitivities
    • Lookback
    • Asian: Continuous Geometric Average
    • Forward Start
    • Basket
    • Rainbow
    • American
  • Lattice models:

    • Binomial Tree (Cox-Ross-Rubinstein)

The stochastic process generators can be used to price path-dependent options via Monte-Carlo.

  • Monte Carlo pricing:
    • Lookback
    • Asian
    • Chooser
    • Barrier
use RustQuant::options::*;

fn main() {
    let VanillaOption = EuropeanOption {
        initial_price: 100.0,
        strike_price: 110.0,
        risk_free_rate: 0.05,
        volatility: 0.2,
        dividend_rate: 0.02,
        time_to_maturity: 0.5,
    };

    let prices = VanillaOption.price();

    println!("Call price = {}", prices.0);
    println!("Put price = {}", prices.1);
}

๐Ÿ“ Mathematics

Optimization and Root Finding

  • Gradient Descent
  • Newton-Raphson

Note: the reason you need to specify the lifetimes and use the type Variable is because the gradient descent optimiser uses the RustQuant::autodiff module to compute the gradients. This is a slight inconvenience, but the speed-up is enormous when working with functions with many inputs (when compared with using finite-difference quotients).

use RustQuant::optimisation::GradientDescent;

// Define the objective function.
fn himmelblau<'v>(variables: &[Variable<'v>]) -> Variable<'v> {
    let x = variables[0];
    let y = variables[1];

    ((x.powf(2.0) + y - 11.0).powf(2.0) + (x + y.powf(2.0) - 7.0).powf(2.0))
}

fn main() {
    // Create a new GradientDescent object with:
    //      - Step size: 0.005 
    //      - Iterations: 10000
    //      - Tolerance: sqrt(machine epsilon)
    let gd = GradientDescent::new(0.005, 10000, std::f64::EPSILON.sqrt() );

    // Perform the optimisation with:
    //      - Initial guess (10.0, 10.0),
    //      - Verbose output.
    let result = gd.optimize(&himmelblau, &vec![10.0, 10.0], true);
    
    // Print the result.
    println!("{:?}", result.minimizer);
}

Integration

  • Numerical Integration (needed for Heston model, for example):
    • Tanh-Sinh (double exponential) quadrature
    • Composite Midpoint Rule
    • Composite Trapezoidal Rule
    • Composite Simpson's 3/8 Rule
use RustQuant::math::*;

fn main() {
    // Define a function to integrate: e^(sin(x))
    fn f(x: f64) -> f64 {
        (x.sin()).exp()
    }

    // Integrate from 0 to 5.
    let integral = integrate(f, 0.0, 5.0);

    // ~ 7.18911925
    println!("Integral = {}", integral); 
}

Risk-Reward Metrics

  • Risk-Reward Measures (Sharpe, Treynor, Sortino, etc)

๐Ÿ”ฎ Machine Learning

Regression

  • Linear (using QR or SVD decomposition)
  • Logistic (using MLE or IRLS). Work in progress.

๐Ÿ’ฐ Money

  • Cashflows
  • Currencies
  • Quotes

๐Ÿ“ˆ Stochastic Processes and Short Rate Models

The following is a list of stochastic processes that can be generated.

  • Brownian Motion
  • Arithmetic Brownian Motion
    • $dX(t) = \mu dt + \sigma dW(t)$
  • Geometric Brownian Motion
    • $dX(t) = \mu X(t) dt + \sigma X(t) dW(t)$
    • Models: Black-Scholes (1973), Rendleman-Bartter (1980)
  • Cox-Ingersoll-Ross (1985)
    • $dX(t) = \left[ \theta - \alpha X(t) \right] dt + \sigma \sqrt{r_t} dW(t)$
  • Ornstein-Uhlenbeck process
    • $dX(t) = \theta \left[ \mu - X(t) \right] dt + \sigma dW(t)$
    • Models: Vasicek (1977)
  • Ho-Lee (1986)
    • $dX(t) = \theta(t) dt + \sigma dW(t)$
  • Hull-White (1990)
    • $dX(t) = \left[ \theta(t) - \alpha X(t) \right]dt + \sigma dW(t)$
  • Extended Vasicek (1990)
    • $dX(t) = \left[ \theta(t) - \alpha(t) X(t) \right] dt + \sigma dW(t)$
  • Black-Derman-Toy (1990)
    • $d\ln[X(t)] = \left[ \theta(t) + \frac{\sigma'(t)}{\sigma(t)}\ln[X(t)] \right]dt + \sigma_t dW(t)$
    • $d\ln[X(t)] = \theta(t) dt + \sigma dW(t)$
use RustQuant::stochastics::*;

fn main() {
    // Create new GBM with mu and sigma.
    let gbm = GeometricBrownianMotion::new(0.05, 0.9);

    // Generate path using Euler-Maruyama scheme.
    // Parameters: x_0, t_0, t_n, n, sims, parallel.
    let output = (&gbm).euler_maruyama(10.0, 0.0, 0.5, 10, 1, false);

    println!("GBM = {:?}", output.paths);
}

๐Ÿค Helper Functions and Macros

A collection of utility functions and macros.

  • Plot a vector.
  • Write vector to file.
  • Cumulative sum of vector.
  • Linearly spaced sequence.
  • assert_approx_equal!

โœ”๏ธ How-tos

See /examples for more details. Run them with:

cargo run --example automatic_differentiation

I would not recommend using RustQuant within any other libraries for some time, as it will most likely go through many breaking changes as I learn more Rust and settle on a decent structure for the library.

๐Ÿ™ I would greatly appreciate contributions so it can get to the v1.0.0 mark ASAP.

๐Ÿ“– References:

  • John C. Hull - Options, Futures, and Other Derivatives
  • Damiano Brigo & Fabio Mercurio - Interest Rate Models - Theory and Practice (With Smile, Inflation and Credit)
  • Paul Glasserman - Monte Carlo Methods in Financial Engineering
  • Andreas Griewank & Andrea Walther - Evaluating Derivatives - Principles and Techniques of Algorithmic Differentiation
  • Steven E. Shreve - Stochastic Calculus for Finance II: Continuous-Time Models
  • Espen Gaarder Haug - Option Pricing Formulas
  • Antoine Savine - Modern Computational Finance: AAD and Parallel Simulations

โญ Star History

Star History

rustquant's People

Contributors

avhz avatar aatmunbaxi avatar simong85 avatar uzaaft avatar lucaschinnerlbain avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.