Git Product home page Git Product logo

inhibitor_combinations's Introduction

Death by a Thousand Cuts โ€“ Combining Kinase Inhibitors for Selective Target Inhibition and Rational Polypharmacology

Ian R. Outhwaite, Sukrit Singh, Benedict-Tilman Berger, Stefan Knapp, John D. Chodera, Markus A. Seeliger
doi: https://doi.org/10.1101/2023.01.13.523972

Using/Running the MMS Method

Download the files in run_MMS/ to a working directory.
Instructions for running the MMS method are in the included in the run_MMS/readme.md file.
Please report any issues or problems here or to [email protected]

Installation

Install the necessary dependencies using the Anaconda or Mamba package manager
To install run: conda env create -n mms --file environment.yaml

Abstract
Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. The high sequence and structural conservation of the catalytic kinase domain complicates the development of specific kinase inhibitors. As a consequence, most kinase inhibitors also inhibit off-target kinases which complicates the interpretation of phenotypic responses. Additionally, inhibition of off-targets may cause toxicity in patients. Therefore, highly selective kinase inhibition is a major goal in both biomedical research and clinical practice. Currently, efforts to improve selective kinase inhibition are dominated by the development of new kinase inhibitors. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target activities. We have developed a multicompound-multitarget scoring (MMS) method framework that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables rational polypharmacology by allowing optimization of inhibitor combinations against multiple selected on-targets and off-targets. Using MMS with previously published chemogenomic kinase inhibitor datasets we determine inhibitor combinations that achieve potent activity against a target kinase and that are more selective than the most selective single inhibitor against that target. We validate the calculated effect and selectivity of a combination of inhibitors using the in cellulo NanoBRET assay. The MMS framework is generalizable to other pharmacological targets where compound specificity is a challenge and diverse compound libraries are available.

Competing Interest Statement
B.-T.B. is the CEO and a shareholder of CELLinib GmbH, Frankfurt, Germany. J.D.C. is a current member of the Scientific Advisory Boards of OpenEye Scientific Software, Interline Therapeutics, and Redesign Science. The Chodera laboratory receives or has received funding from the National Institute of Health, the National Science Foundation, the Parker Institute for Cancer Immunotherapy, Relay Therapeutics, Entasis Therapeutics, Silicon Therapeutics, EMD Serono (Merck KGaA), AstraZeneca, Vir Biotechnology, XtalPi, Interline Therapeutics, and the Molecular Sciences Software Institute, the Starr Cancer Consortium, the Open Force Field Consortium, Cycle for Survival, a Louis V. Gerstner Young Investigator Award, and the Sloan Kettering Institute. A complete funding history for the Chodera lab can be found at http://choderalab.org/funding. No other authors declare competing interests.

This work is currently in the preprint stage and has not yet been peer reviewed.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.