Git Product home page Git Product logo

heat-cvd-uhi-dashboard's Introduction

Heat-CVD-UHI-Dashboard

Brief Project Description

This is the code and data for an R Shiny dashboard, which is associated with the manuscript 'Urban Heat Island Impacts on Heat-Related Cardiovascular Morbidity: A Time Series Analysis of Older Adults in US Metropolitan Areas'. The dashboard is an interactive supplemental material and allows for interaction with the manuscript's primary results - the heat-related cardiovascular risk and burden, in UHI-affected areas compared to areas unaffected by UHIs, in 120 contiguous US metropolitan statistical areas (MSAs), 2000-2017. The results can be viewed for the entire study population, different subpopulations, and in low and high urban heat island intensity (UHII) areas. It also allows for interaction with the MSA-level heat-related risk and burden, overall and in low and high UHII areas, and exploration of the ZIP code-level temperature, UHII, and Medicare hospitalization data used in the analyses. The dashboard displays a variety of interactive tables and figures and the results displayed in the dashboard can be downloaded. Details on the datasets and methods used as well as a discussion of all results and sensitivity analyses can be found in the associated manuscript. At present, the dashboard can be viewed here: https://shiny.stat.ncsu.edu/Heat-CVD-UHI-Dashboard/.

Manuscript Abstract

Many United States (US) cities are experiencing urban heat islands (UHIs) and climate change-driven temperature increases. Extreme heat increases cardiovascular disease (CVD) risk, yet little is known about how this association varies with UHI intensity (UHII) within and between cities. We aimed to identify the urban populations most at-risk of and burdened by heat-related CVD morbidity in UHI-affected areas compared to unaffected areas. ZIP code-level daily counts of CVD hospitalizations among Medicare enrollees, aged 65-114, were obtained for 120 US metropolitan statistical areas (MSAs) between 2000-2017. Mean ambient temperature exposure was estimated by interpolating daily weather station observations. ZIP codes were classified as low and high UHII using the first and fourth quartiles of an existing surface UHII metric, weighted to each have 25% of all CVD hospitalizations. MSA-specific associations between ambient temperature and CVD hospitalization were estimated using quasi-Poisson regression with distributed lag non-linear models and pooled via multivariate meta-analyses. Across the US, extreme heat (MSA-specific 99th percentile, on average 28.6 °C) increased the risk of CVD hospitalization by 1.5% (95% CI: 0.4%, 2.6%), with considerable variation among MSAs. Extreme heat-related CVD hospitalization risk in high UHII areas (2.4% [95% CI: 0.4%, 4.3%]) exceeded that in low UHII areas (1.0% [95% CI: -0.8%, 2.8%]), with upwards of a 10% difference in some MSAs. During the 18-year study period, there were an estimated 37,028 (95% CI: 35,741, 37,988) heat-attributable CVD admissions. High UHII areas accounted for 35% of the total heat-related CVD burden, while low UHII areas accounted for 4%. High UHII disproportionately impacted already heat-vulnerable populations; females, individuals aged 75-114, and those with chronic conditions living in high UHII areas experienced the largest heat-related CVD impacts. Overall, extreme heat increased cardiovascular morbidity risk and burden in older urban populations, with UHIs exacerbating these impacts among those with existing vulnerabilities.

heat-cvd-uhi-dashboard's People

Contributors

stephcleland avatar

Watchers

 avatar Kostas Georgiou avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.