Git Product home page Git Product logo

fpo's Introduction

FPO.js

FPO ("eff-poh") is an FP Library for JavaScript. The main aesthetic difference is that the FPO.* core API methods are all styled to use named-arguments (object parameter destructuring) instead of individual positional arguments. As with most FP libraries, all public FPO methods are curried.

Not only do named-arguments eliminate having to remember a method signature's parameter order -- named arguments can be provided in any order! -- they also make skipping optional parameters (to apply defaults) simple.

This elimination of ordering concern and/or skipping arguments particularly comes in handy when you're currying. You don't have to juggle the parameter order at all; just pass in whichever named argument(s) you want, in whatever sequence you need!

The other benefit is that these API methods will automatically work with your program's named-argument style functions. If you need to interoperate between both styles of function parameters in your program, adapt either style to the other using the FPO.apply(..) and FPO.unapply(..) methods.

For convenience and familiarity sake, FPO also exposes all its methods in the traditional positional argument form, under FPO.std.*. These methods are very similar to their equivalents in Ramda, for example.

Note: If you're not fully confident in your FP skills, I've written a book on FP in JavaScript: Functional-Light JavaScript. Go check it out!

Environment Support

This library uses ES6+ features. If you need to support ES<=5 environments, transpile it first (with Babel, etc).

At A Glance

// the classic/traditional method style
// (on the `FPO.std.*` namespace)
FPO.std.reduce(
	(acc,v) => acc + v,
	undefined,
	[3,7,9]
);  // 19

// FPO named-argument method style
FPO.reduce({
	arr: [3,7,9],
	fn: ({acc,v}) => acc + v
}); // 19

Instead of needing to provide an undefined placeholder in the second argument position to skip specifying an initial value, named-argument style allows us to just omit that argument. We also specified arr first and fn second just to show order doesn't matter anymore!

Currying with named-arguments (in any sequence!) is a breeze:

var f = FPO.reduce({ arr: [3,7,9] });

// later:
f( {fn: ({acc,v}) => acc + v} );  // 19
f( {fn: ({acc,v}) => acc * v} );  // 189

The equivalent using a standard FP library would look like:

var f = curry( flip( partialRight( reduce, [[3,7,9]] ) ) )( 0 );

f( (acc,v) => acc + v );  // 19

Phew, that's a lot of argument juggling! FPO eliminates all that noisy distraction.

API

  • See Core API for documentation on all the methods in the FPO.* namespace.

  • See Standard API for documenation on the methods in the FPO.std.* namespace.

    All core methods have a standard positional-parameter form available under the FPO.std.* namespace. In many respects, their conceptual behavior is the same, but in some cases there's some differences to be aware of.

    There are also a few methods on the FPO.std.* namespace that have no equivalent in the core API as they are unnecessary or don't make sense.

Adapting

What if you have a traditional parameter-style function you want to use with one of the object-parameter style FPO API methods? Adapt it using the object-parameter-aware FPO.apply(..):

// traditional-parameter style function
function add(acc,v) { return acc + v; }

FPO.reduce({
	arr: [3,7,9],
	fn: FPO.apply( {fn: add} )
});  // 19

Adapting isn't limited to just interoperating with FPO methods. You can use FPO.apply(..) and FPO.unapply(..) to seamlessly adapt between functions of both styles in your own application code:

// note: cb is expected to be an "error-first" style
// traditional callback function
function ajax(url,cb) { .. }

// our object-parameter style function
function onResponse({ resp, err }) {
	if (!err) {
		console.log( resp );
	}
}

// create an object-parameter style adapter for `ajax(..)`:
var request = FPO.apply( {fn: ajax} );

request({
	url: "http://some.url",
	cb: FPO.unapply( {fn: onResponse, props:["err","resp"]} )
});

Not Order, But Names

The exchange we make for not needing to remember or juggle argument order is that we need to know/remember the parameter names. For example, FPO.reduce(..) expects named arguments of fn, v, and arr. If you don't use those names, it won't work correctly.

To aid in getting used to that tradeoff in usability, FPO uses straightforward conventions for parameter names; once learned, it should be mostly trivial to use any of the API methods.

The named argument naming conventions (in order of precedence):

  • When a method expects a function, the named argument is fn.
  • When a method expects a number, the named argument is n.
  • When a method expects a value, the named argument is v.
  • When a method expects an array of functions, the named argument is fns.
  • When a method expects a single array, the named argument is arr.
  • When a method expects two arrays, the named arguments are arr1 and arr2.
  • When a method expects a single object-property name, the named argument is prop.
  • When a method expects a list of object-property names, the named argument is props.
  • When a mapper function is called, it will be passed these named arguments: v (value), i (index), arr (array).
  • When a predicate function is called, it will be passed these named arguments: v (value), i (index), arr (array).
  • When a reducer function is called, it will be passed these named arguments: acc (accumulator), v (value), i (index), arr (array).
  • When a transducer combination function is called, it will be passed these named arguments: acc (accumulator), v (value).

Some exceptions to these naming conventions:

  • setProp(..) expects: prop (object-property name), o (object), v (value).
  • partial(..) expects: fn (function), args (object containing the named-argument/value pairs to partially apply).
  • flatten(..) expects: v (array), n (count of nesting levels to flatten out).
  • transduce(..) expects: fn (transducer function), co (combination function), v (initial value), arr (array).

Arity

Arity is typically defined as the number of declared parameters (expected arguments) for a function. With traditional style functions, this is just a simple numeric count.

For named-argument style functions, the situation is more nuanced. One interpretation of arity would be a raw count of named-arguments (how many properties present). Another interpretation would limit this counting to only the set of expected named-arguments.

For currying, FPO assumes the straight numeric count interpretation. FPO.curry( {fn: foo, n: 3} ) makes a curried function that accepts the first 3 properties, one at a time, regardless of what they're named.

For unary(..), binary(..), and nAry(..), FPO requires a list of properties (props) to filter through for the underlying function. FPO.binary({fn: foo, props:["x","y"]}) makes a function that only lets x and y named arguments through to foo(..).

Currying

The strictest definition of currying is that each call only allows through one argument (foo(1)(2)(3)). That's consistent with how currying works in Haskell, for example.

However, for convenience, most FP libraries in JS use a looser definition of currying where multiple arguments can be passed in with each call (foo(1,2)(3)).

FPO supports both approaches. FPO.curry(..) (and FPO.std.curry(..)) use the stricter one-at-a-time definition -- subsequent arguments in each call are ignored -- while FPO.curryMultiple(..) (and FPO.std.curryMultiple(..)) use the looser multiple-arguments definition.

All FPO methods are multiple-curried for convenience.

Builds

The distribution library file (fpo.js) can be built (minified) with an included utility. Note: Minification is currently disabled.

With npm, run:

npm run build-core

Or, manually:

node build-core.js

The build utility expects Node.js version 6+.

Tests

To run the tests, you must first build the core library.

With npm, run:

npm test

Or, manually:

node tests/node-tests.js

The unit test utility expects Node.js version 6+.

You can also run the tests in your browser by opening up tests.html (requires ES6+ environment).

License

The code and all the documentation are released under the MIT license.

http://getify.mit-license.org/

fpo's People

Contributors

getify avatar

Watchers

James Cloos avatar Sebastian De Deyne avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.