Git Product home page Git Product logo

cc's Introduction

ColorChord

What is ColorChord?

Chromatic Sound to Light Conversion System. It's really that simple. Unlike so many of the sound responsive systems out there, ColorChord looks at the chromatic properties of the sound. It looks for notes, not ranges. If it hears an "E" it doesn't care what octave it's in, it's an E. This provides a good deal more interesting patterns between instruments and music than would be available otherwise.

Background Video here:

What Is ColorChord?

ColorChord on an ESP8266:

Websockets for Awesome on an ESP8266

More videos below!

Background

Developed over many years, ColorChord 2 is now at the alpha stages. ColorChord 2 uses the same principles as ColorChord 1. A brief writeup on that can be seen here: http://cnlohr.blogspot.com/2010/11/colorchord-sound-lighting.html

The major differences in ColorChord 2 is the major rewrite to move everything back to the CPU and a multitude of algorithmic optimizations to make it possible to run on something other than the brand newest of systems.

Feuge in D Minor (ColorChord 2 running a strip of WS2812 LEDs):

ColorChord

ColorChord 2 running a voronoi diagram with Mayhem's Dr. Rocker

ColorChord 2 Preview: Dr Rocker by Mayhem

Current State of Affairs

Currently, ColorChord 2 is designed to run on Linux or Windows. It's not particularly tied to an architecture, but does pretty much need a dedicated FPU to achieve any decent performance. Right now there aren't very many output options available for it. The most interesting one used for debugging is a voronoi-diagram-like thing called "DisplayShapeDriver."

ColorChord: Embedded

There is work on an embedded version of ColorChord, which avoids floating point operations anywhere in the output pipeline. Though I have made efforts to port it to AVRs, it doesn't seem feasable to operate on AVRs without some shifty tricks which I'd like to avoid, so I have retargeted my efforts to 32-bit systems, such as the STM32F303, STM32F407, and (somehow) the ESP8266. ColorChord Embedded uses a different codebase, located in the embeddedcommon and distributed among the various embedded* folders.

Building with Linux

Use apt-get to install the following packages for Debian/Ubuntu/Mint:

apt-get install build-essential libpulse-dev libasound2-dev libx11-dev libxext-dev libxinerama-dev libusb-1.0-0-dev libudev-dev

To get colorchord, type:

git clone --recurse-submodules https://github.com/cnlohr/colorchord

To make colorchord, type:

make

Building with Windows

There are 3 options available for building on Windows, MSYS2, clang, or TCC.

MSYS2

With either 64bit or 32bit MSYS2 installed, run the MSYS2 MSYS launcher and use pacman to set up a MinGW32 toolchain, if you don't have one already:

pacman -S mingw-w64-i686-toolchain

If you see "/mingw32 exists in filesystem", you must temporarily rename or relocate the mingw32.exe file at MSYS2's root folder level and try again. Restore mingw32.exe before moving on.

Next, run the MSYS2 MinGW 32bit launcher to access the toolchain. The previously launched MSYS terminal can be closed.

To make colorchord, navigate to your working copy and type:

mingw32-make colorchord.exe

clang

Start by downloading the clang compiler, and installing it.

Edit the batch script at colorchord2/windows/compile-clang.bat:

  • Verify that the executable location is correct, on line 1 (CC).

If you have the Windows SDK installed, you should not need to do any additional work.
If you do not, you'll want to either install it to get the official headers, or use the unofficial headers instead by adding -DNO_WIN_HEADERS to the CCFLAGS line in the batch file above.

Run the batch script, and it should output to colorchord2/colorchord.exe.

TCC

Start by downloading TCC, and extracting it to a location of your choice.

Edit the batch script at colorchord2/windows/compile.bat:

  • Edit line 17 (CC) to be the location where you put TCC. If there are spaces in the path, wrap the entire path in quotes.

Note that TCC is not able to use the Windows SDK, and as such using the unofficial headers is required, and automatically enabled when compiling with TCC. If you encounter issues, try the clang method above instead.

Using

To run colorchord, use the following syntax:

./colorchord [config file, by default 'default.conf'] [any additional parameters]

If you edit default.conf while the program is running and resave it, it will use the settings in the newly saved file.

Additional Videos

Come Thou Fount of Every Blessing

ColorChord 2 - David Chapman Plays Sax

cc's People

Contributors

jasii avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.