Git Product home page Git Product logo

rocketqa's Introduction

In recent years, the dense retrievers based on pre-trained language models have achieved remarkable progress. To facilitate more developers using cutting edge technologies, this repository provides an easy-to-use toolkit for running and fine-tuning the state-of-the-art dense retrievers, namely ๐Ÿš€RocketQA. This toolkit has the following advantages:

  • State-of-the-art: ๐Ÿš€RocketQA provides our well-trained models, which achieve SOTA performance on many dense retrieval datasets. And it will continue to update the latest models.
  • First-Chinese-model: ๐Ÿš€RocketQA provides the first open source Chinese dense retrieval model, which is trained on millions of manual annotation data from DuReader.
  • Easy-to-use: By integrating this toolkit with JINA, ๐Ÿš€RocketQA can help developers build an end-to-end question answering system with several lines of code.

Installation

We provide two installation methods: Python Installation Package and Docker Environment

Install with Python Package

First, install PaddlePaddle.

# GPU version:
$ pip install paddlepaddle-gpu

# CPU version:
$ pip install paddlepaddle

Second, install rocketqa package:

$ pip install rocketqa

NOTE: this toolkit MUST be running on Python3.6+ with PaddlePaddle 2.0+.

Install with Docker

docker pull rocketqa/rocketqa

docker run -it docker.io/rocketqa/rocketqa bash

Getting Started

Refer to the examples below, you can build and run your own Search Engine with several lines of code. We also provide a Playground with JupyterNotebook. Try ๐Ÿš€RocketQA straight away in your browser!

Running with JINA

JINA is a cloud-native neural search framework to build SOTA and scalable deep learning search applications in minutes. Here is a simple example to build a Search Engine based on JINA and RocketQA.

cd examples/jina_example
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
# JINA will automaticlly start a web service for you
python3 app.py index toy_data/test.tsv

# Try some questions related to the indexed Documents
python3 app.py query_cli

Please view JINA example to know more.

Running with FAISS

We also provide a simple example built on Faiss.

cd examples/faiss_example/
pip3 install -r requirements.txt

# Generate vector representations and build a libray for your Documents
python3 index.py en ../marco.tp.1k marco_index

# Start a web service on http://localhost:8888/rocketqa
python3 rocketqa_service.py en ../marco.tp.1k marco_index

# Try some questions related to the indexed Documents
python3 query.py

API

You can also easily integrate ๐Ÿš€RocketQA into your own task. We provide two types of models, ERNIE-based dual encoder for answer retrieval and ERNIE-based cross encoder for answer re-ranking. For running our models, you can use the following functions.

Load model

rocketqa.available_models()

Returns the names of the available RocketQA models. To know more about the available models, please see the code comment.

rocketqa.load_model(model, use_cuda=False, device_id=0, batch_size=1)

Returns the model specified by the input parameter. It can initialize both dual encoder and cross encoder. By setting input parameter, you can load either RocketQA models returned by "available_models()" or your own checkpoints.

Dual encoder

Dual-encoder returned by "load_model()" supports the following functions:

model.encode_query(query: List[str])

Given a list of queries, returns their representation vectors encoded by model.

model.encode_para(para: List[str], title: List[str])

Given a list of paragraphs and their corresponding titles (optional), returns their representations vectors encoded by model.

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (dot product between two representation vectors).

Cross encoder

Cross-encoder returned by "load_model()" supports the following function:

model.matching(query: List[str], para: List[str], title: List[str])

Given a list of queries and paragraphs (and titles), returns their matching scores (probability that the paragraph is the query's right answer).

Examples

Following the examples below, you can retrieve the vector representations of your documents and connect ๐Ÿš€RocketQA to your own tasks.

Run RocketQA Model

To run RocketQA models, you should set the parameter model in 'load_model()' with RocketQA model name returned by 'available_models()'.

import rocketqa

query_list = ["trigeminal definition"]
para_list = [
    "Definition of TRIGEMINAL. : of or relating to the trigeminal nerve.ADVERTISEMENT. of or relating to the trigeminal nerve. ADVERTISEMENT."]

# init dual encoder
dual_encoder = rocketqa.load_model(model="v1_marco_de", use_cuda=True, device_id=0, batch_size=16)

# encode query & para
q_embs = dual_encoder.encode_query(query=query_list)
p_embs = dual_encoder.encode_para(para=para_list)
# compute dot product of query representation and para representation
dot_products = dual_encoder.matching(query=query_list, para=para_list)

News

  • August 26, 2021: RocketQA v2 was accepted by EMNLP 2021.
  • May 5, 2021: PAIR was accepted by ACL 2021
  • March 11, 2021: RocketQA v1 was accepted by NAACL 2021.

Citations

If you find RocketQA v1 models helpful, feel free to cite our publication RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering

@inproceedings{rocketqa_v1,
    title="RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering",
    author="Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu and Haifeng Wang",
    year="2021",
    booktitle = "In Proceedings of NAACL"
}

If you find PAIR models helpful, feel free to cite our publication PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval

@inproceedings{rocketqa_pair,
    title="PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval",
    author="Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of ACL Findings"
}

If you find RocketQA v2 models helpful, feel free to cite our publication RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking

@inproceedings{rocketqa_v2,
    title="RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking",
    author="Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang and Ji-Rong Wen",
    year="2021",
    booktitle = "In Proceedings of EMNLP"
}

License

This repository is provided under the Apache-2.0 license.

Contact Information

For help or issues using RocketQA, please submit a Github issue.

For other communication or cooperation, please contact Jing Liu ([email protected]) or scan the following QR Code.

rocketqa's People

Contributors

legendarydan avatar nomagick avatar reyonren avatar sfwydyc avatar zeyuchen avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.