Git Product home page Git Product logo

do-conv's Introduction

DO-Conv: Depthwise Over-parameterized Convolutional Layer

Created by Jinming Cao, Yangyan Li, Mingchao Sun, Ying Chen, Dani Lischinski, Daniel Cohen-Or, Baoquan Chen, and Changhe Tu.

Introduction

DO-Conv is a depthwise over-parameterized convolutional layer, which can be used as a replacement of conventional convolutional layer in CNNs in the training phase to achieve higher accuracies. In the inference phase, DO-Conv can be fused into a conventional convolutional layer, resulting in the computation amount that is exactly the same as that of a conventional convolutional layer.

Please see our preprint on arXiv for more details, where we demonstrated the advantages of DO-Conv on various benchmark datasets/tasks.

We Highly Welcome Issues

We highly welcome issues, rather than emails, for DO-Conv related questions.

Moreover, it would be great if a minimal reproduciable example code is provide in the issue.

ImageNet Classification Performance

We take the model zoo of GluonCV as baselines. The settings in the baselines have been tuned to favor baselines, and they are not touched during the switch to DO-Conv. In other words, DO-Conv is the one and only change over baselines, and no hyper-parameter tuning is conducted to favor DO-Conv. We consider GluonCV highly reproducible, but still, to exclude clutter factors as much as possible, we train the baselines ourselves, and compare DO-Conv versions with them, while reporting the performance provided by GluonCV as reference. The results are summarized in this table where the “DO-Conv” column shows the performance gain over the baselines.

Network Depth Reference Baseline DO-Conv
Plain 18 - 69.97 +1.01
ResNet-v1 18 70.93 70.87 +0.82
34 74.37 74.49 +0.49
50 77.36 77.32 +0.08
101 78.34 78.16 +0.46
152 79.22 79.34 +0.07
ResNet-v1b 18 70.94 71.08 +0.71
34 74.65 74.35 +0.77
50 77.67 77.56 +0.44
101 79.20 79.14 +0.25
152 79.69 79.60 +0.10
ResNet-v2 18 71.00 70.80 +0.64
34 74.40 74.76 +0.22
50 77.17 77.17 +0.31
101 78.53 78.56 +0.11
152 79.21 79.24 +0.14
ResNext 50_32x4d 79.32 79.21 +0.40
MobileNet-v1 - 73.28 73.30 +0.03
MobileNet-v2 - 72.04 71.89 +0.16
MobileNet-v3 - 75.32 75.16 +0.14

DO-Conv Usage

In thie repo, we provide reference implementation of DO-Conv in Tensorflow (tensorflow-gpu==2.2.0), PyTorch (pytorch==1.4.0, torchvision==0.5.0) and GluonCV (mxnet-cu100==1.5.1.post0, gluoncv==0.6.0), as replacement to tf.keras.layers.Conv2D, torch.nn.Conv2d and mxnet.gluon.nn.Conv2D, respectively. Please see the code for more details.

We highly welcome pull requests for adding support for different versions of Pytorch/Tensorflow/GluonCV.

Example Usage: Tensorflow (tensorflow-gpu==2.2.0)

We show how to use DO-Conv based on the examples provided in the Tutorial of TensorFlow with MNIST dataset.

1 . Run the demo example first to get the accuracy of the baseline.

python sample_tf.py

If there is any wrong at this step, please check whether the tensorflow version meets the requirements.

2 . Replace these lines:

self.conv1 = Conv2D(32, 3, activation='relu')
self.conv2 = Conv2D(8, 3, activation='relu')

with

self.conv1 = DOConv2D(32, 3, activation='relu')
self.conv2 = DOConv2D(8, 3, activation='relu')

to apply DO-Conv without any other changes.

python sample_tf.py

3 . We provide the performance improvement in this demo example as follows. (averaged accuracy (%) of five runs)

run1 run2 run3 run4 run5 avg +
Baseline 98.5 98.51 98.54 98.46 98.51 98.504 -
DO-Conv 98.71 98.62 98.67 98.75 98.66 98.682 0.178

4 . Then you can use DO-Conv in your own network in this way.

Example Usage: PyTorch (pytorch==1.4.0, torchvision==0.5.0)

We show how to use DO-Conv based on the examples provided in the Tutorial of PyTorch with MNIST dataset.

1 . Run the demo example first to get the accuracy of the baseline.

python sample_pt.py

If there is any wrong at this step, please check whether the pytorch and torchvision versions meets the requirements.

2 . Replace these lines:

model = nn.Sequential(
    Conv2d(1, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    Conv2d(16, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    Conv2d(16, 10, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.AdaptiveAvgPool2d(1),
    Lambda(lambda x: x.view(x.size(0), -1)),
)

with

model = nn.Sequential(
    DOConv2d(1, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    DOConv2d(16, 16, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    DOConv2d(16, 10, kernel_size=3, stride=2, padding=1),
    nn.ReLU(),
    nn.AdaptiveAvgPool2d(1),
    Lambda(lambda x: x.view(x.size(0), -1)),
)

to apply DO-Conv without any other changes.

python sample_pt.py

3 . We provide the performance improvement in this demo example as follows. (averaged accuracy (%) of five runs)

run1 run2 run3 run4 run5 avg +
Baseline 94.63 95.31 95.23 95.24 95.37 95.156 -
DO-Conv 95.59 95.73 95.68 95.70 95.67 95.674 0.518

4 . Then you can use DO-Conv in your own network in this way.

Example Usage: GluonCV (mxnet-cu100==1.5.1.post0, gluoncv==0.6.0)

We show how to use DO-Conv based on the examples provided in the Tutorial of GluonCV with MNIST dataset.

1 . Run the demo example first to get the accuracy of the baseline.

python sample_gluoncv.py

If there is any wrong at this step, please check whether the mxnet and gluoncv versions meets the requirements.

2 . Replace these lines:

self.conv1 = Conv2D(20, kernel_size=(5,5))
self.conv2 = Conv2D(50, kernel_size=(5,5))

with

self.conv1 = DOConv2D(1, 20, kernel_size=(5, 5))
self.conv2 = DOConv2D(20, 50, kernel_size=(5, 5))

to apply DO-Conv, note that the 'in_channels' in DOConv2D of GluonCV should be set explicitly.

python sample_gluoncv.py

3 . We provide the performance improvement in this demo example as follows. (averaged accuracy (%) of five runs)

run1 run2 run3 run4 run5 avg +
Baseline 98.10 98.10 98.10 98.10 98.10 98.10 -
DO-Conv 98.26 98.26 98.26 98.26 98.26 98.26 0.16

4 . Then you can use DO-Conv in your own network in this way.

do-conv's People

Contributors

yangyanli avatar jinming0912 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.