Git Product home page Git Product logo

multistate_occupancy's Introduction

Fitting a multistate occupancy model with uncertainty in Jags

Motivation

We would like to implement a multistate single-season occupancy model (Nichols et al. 2007) in Jags. To do so, we adopt a hidden Markov modeling formulation of the model (Gimenez et al. 2014 and associated Wiki). To illustrate the analysis, we use simulated data provided by Donovan et al. (2007).

Data

The states are 1 for site unoccupied, 2 for occupied with no production of young ('uncertain' non-breeding state) and 3 for occupied with successful reproduction ('certain' breeding state). The observations are 0 for species not observed, 1 for species observed and 2 for species observed with young.

These data were simulated with the following parameter values:

  • probability that the site is occupied by non-breeders psi1 = 0.3;
  • probability that the site is occupied by breeders psi2 = 0.5;
  • detection probability of non-breeders p1 = 0.5;
  • detection probability of breeders p2 = 0.7;
  • probability of detecting evidence of reproduction, given the site is occupied with young delta = 0.8;
  • number of sites R = 250.
dat <- readr::read_csv2('https://raw.githubusercontent.com/oliviergimenez/multistate_occupancy/master/multiocc.csv')
#head(dat)
#tail(dat)
#sum(dat==1)
#sum(dat==2)
#sum(dat==0)

Model fitting in JAGS

Let's write the model:

model <- function() {

  # Define all parameters	
  # Probabilities for initial states
  px0[1] <- 1 / (1 + prop[1] + prop[2])
  px0[2] <- prop[1] / (1 + prop[1] + prop[2]) # prob. of occupancy state 1
  px0[3] <- prop[2] / (1 + prop[1] + prop[2]) # prob. of occupancy state 2
  
  # Observation process
  # step 1: detection
  po1[1,1] <- 1
  po1[1,2] <- 0
  po1[1,3] <- 0
  po1[2,1] <- 1 - p1
  po1[2,2] <- p1 # detection state 1
  po1[2,3] <- 0
  po1[3,1] <- 1 - p2
  po1[3,2] <- 0
  po1[3,3] <- p2 # detection state 2
  
  # step 2: assignement
  po2[1,1] <- 1
  po2[1,2] <- 0
  po2[1,3] <- 0
  po2[2,1] <- 0
  po2[2,2] <- 1
  po2[2,3] <- 0
  po2[3,1] <- 0
  po2[3,2] <- 1 - delta
  po2[3,3] <- delta # assignment conditional on detection
  # form the matrix product
  po <- po1 %*% po2

  # State process
  px[1,1] <- 1
  px[1,2] <- 0
  px[1,3] <- 0
  px[2,1] <- 0
  px[2,2] <- 1
  px[2,3] <- 0
  px[3,1] <- 0
  px[3,2] <- 0
  px[3,3] <- 1

  for (i in 1:N){ # loop over site
    
    # state eq.
    z[i] ~ dcat(px0[1:3]) 

    # obs eq.
    for (j in 1:K){  # loop over occasion
      y[i,j] ~ dcat(po[z[i],1:3])
    }
  }

  # Prior 
  for (j in 1:2){ # use generalized logit for initial states
  log(prop[j]) <- theta[j]
  theta[j] ~ dnorm(0,1) 
  }
  p1 ~ dunif(0, 1)
  p2 ~ dunif(0, 1)
  delta ~ dunif(0, 1)

  psi1 <- prop[1] / (1 + prop[1] + prop[2]) # prob. of occupancy state 1
  psi2 <- prop[2] / (1 + prop[1] + prop[2]) # prob. of occupancy state 2
 
  }

Form the list of data:

N <- nrow(dat)
K <- ncol(dat)
y <- as.matrix(dat + 1)
mydatax <- list(N = N, K = K, y = y)

Form the list of initial values:

zinit <- apply(y,1,max)
init1 <- list(p1 = 0.3, theta = rnorm(2,0,1), z = zinit)
init2 <- list(p1 = 0.7, theta = rnorm(2,0,1), z = zinit)
inits <- list(init1, init2)

Specify the parameters to be monitored:

parameters <- c("psi1","psi2","p1","p2","delta")

Tadaaaaaaan, fit the model:

library(R2jags)
out <- jags(mydatax, inits, parameters, model, n.chains=2, n.iter=2000, n.burnin=500)

Results

Check convergence:

traceplot(out,ask=F)

Posterior densities:

library(lattice)
jagsfit.mcmc <- as.mcmc(out)
densityplot(jagsfit.mcmc)

Print results:

print(out,digits = 2)

And compare with E-SURGE results:

#Par# 54# C( 3, 3)( 1, 1)( 1 2) | 0.794364460 delta 0.731225549 0.845798972 0.029218536
#Par# 24# E( 2, 2)( 1, 1)( 1 1) | 0.515786096 p1 0.425952230 0.604611235 0.046070203
#Par# 25# E( 3, 3)( 1, 1)( 1 1) | 0.704231715 p2 0.646969850 0.755712647 0.027819907
#Par# 2# IS( 1, 2)( 1, 1)( 1 1) | 0.295674999 psi1 0.228163996 0.373495359 0.037265126
#Par# 3# IS( 1, 3)( 1, 1)( 1 1) | 0.502904937 psi2 0.432898323 0.572797837 0.035924248

References

Donovan, T. M. and J. Hines (2007) Exercises in occupancy modeling and estimation - Exercise 16 'Multiple occupancy states models'. http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm

Gimenez, O., L. Blanc, A. Besnard, R. Pradel, P. F. Doherty Jr, E. Marboutin and R. Choquet (2014). Fitting occupancy models with E-SURGE: hidden-Markov modelling of presence-absence data. Methods in Ecology and Evolution. 5: 592–597.

Nichols, J. D., Hines, J. E., Mackenzie, D. I., Seamans, M. E. and Gutiérrez, R. J. (2007). Occupancy estimation and modeling with multiple states and state uncertainty. Ecology 88: 1395-1400.

multistate_occupancy's People

Contributors

oliviergimenez avatar

Stargazers

 avatar  avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.