Git Product home page Git Product logo

nirviaje.github.io's Introduction

Your GitHub Learning Lab Repository for GitHub Pages

Welcome to your repository for your GitHub Learning Lab course. This repository will be used during the different activities that I will be guiding you through.

Oh! I haven't introduced myself...

I'm the GitHub Learning Lab bot and I'm here to help guide you in your journey to learn and master the various topics covered in this course. I will be using Issue and Pull Request comments to communicate with you. In fact, I already added an issue for you to check out.

issue tab

I'll meet you over there, can't wait to get started!

Let me know several or a few

  • one
  • two
  • ..

now we get anchor?

nirviaje.github.io's People

Contributors

crichid avatar hollenberry avatar nirviaje avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar

nirviaje.github.io's Issues

Intelligence systems

Issue by derekoutis
Monday Oct 29, 2018 at 18:30 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/12


Intelligence systems for routine operation

  • computer visual
  • planning
  • robotics #7

Intelligence systems for accident limitation/recovery

  • how?

Reference

Solar furnace

基本参数

  • 有效面积 > 50*50m,
  • 反射率 > 90%?
  • bootstrap反射面与框架总重 ~20吨
  • 施工与自适应光学交换动量脚手架结构

反射面构成

反射面成形

  • 指标要求
    • 按焦距与光斑精度要求计,线度误差约0.5%
  • 地面携带init框架
  • 在轨bootstrap结构
    • 合金轧板
      • 钣金结构强度与自重
        • 10Ton@1mm thickness, 1000m sq,
    • 型材折弯

在轨姿态

  • 与磁盾相互作用保持两轴
    • 空间多组磁控载荷互相拉力,磁拉格朗日点
      • 磁力矩器与钢结构导磁 #4
  • 在轨推力?
  • non-keplerian satellite? by @emptymalei

自适应光学

  • 磁执行器脚手架自适应光学
  • Lidar to feedback
    • 镜面监测 #15
      • 主要方向
        • 全闭环反馈,实时监控焦点(或可控旁瓣/配合目标成像情况
        • 局部闭环反馈,监控关键节点推算焦点特性
      • 激光扫描光源放置在另一焦点?
        • 每一组焦点镜面需要单独的光源
      • 通过测量星空星点位置在反射面的反光确定反射面姿态
        • 对镜面质量敏感
      • 机器视觉3D扫描监控反射单元
  • 焦点特性
    • 振动,自适应光学引起的结构振颤
      • 电磁阻尼?
    • 热变形

焦点熔融能力

  • 焦点面积
  • 功率密度

姿态约束

  • 面对太阳
    • 公转迁徙
  • 避开阴影
  • 焦点集中在自转轴极点
    • 可利用缓慢进动/其他自转减速机制
    • 季节效应

log

The EDS, a self-bootstrap large scale industry in deep space

指数深空,一种大尺度空间工业自举建设方法

Abstract

包含学术研究类文章摘要的四要素:研究目的、方法、结果、结论;综述类的文章,应涵盖该领域的主要成果和研究进展,提出作者的观点和见解,指出这一主题继续研究的方向......(8.5 Pt宋体)

建议关键词为4-8个,从大领域、小领域、研究方法、研究对象、使用数据、主要结果、热点检索词等方面精选关键词(8.5 Pt宋体)

参考文献(References)
Ramesh A, Lee D J and Hong S G. Soluble microbial products(SMP) and soluble extracellular polymeric substaIlces(EPS)from wastewater sludge. [DOI 10.1007/ s00253-006-0446-y] (8 Pt)
Lin Z H, Mo X G, Li H X and Li H B. 2002. Comparison of three spatial interpolation methods for climate variables in China. Acta Geographica Sinica, 57(1): 47-56 (林忠辉, 莫兴国, 李宏轩, 李海滨. 2002. **陆地区域气象要素的空间插值. 地理学报, 57(1): 47-56) [DOI:10.3321/j.issn:0375-5444. 2002.01.006] (中文文献标注方式)
Zhang J P, Yi W N, Wang X H, Qiao Y L and Zheng X B. 2001. Measurement and analysis of reflectance in central area of Dunhuang radiometric calibration site. Compilation of Papers about Scientific Research Achievement for China Radiometric Calibration Sites. Beijing: Geological Publishing Press:1-5 (章俊平, 易维宁, 李先华, 乔延利, 郑小兵. 2001. 敦煌辐射校正场中心区反射率特性的测量及分析. **遥感卫星辐射校正场科研成果论文选编. 北京:地质出版社:1-5)(专著、论文集应列出出版社和出版地)
CHRISTINE M. 1998. Plant physiology in the Genome Era[. Science, 281:331-332[1998-09-23]. http://www.sciencemag. org/ cgi/collection/anatmorp (网络文献需给出访问日期)
Shao Y. 2000. Studies on Rice Backscatter Signatures in
Time Domain and its Application. Beijing: Chinese
Academy of Sciences:22-38

Structure mass of space system is a critical limitation for the launch to orbit and takes a significant part of large equipment. The further investigation includes on-orbit assembly, in-situ resource utilization of fuels and build materials etc. However, relatively sustainable exponential expansion of the industry is needed to get large scale space industries. We propose the concept of Exponential Deep Space (EDS) here to enable exponential scaling of industry in deep space to achieve the goal above.

空间系统的结构质量在发射入轨过程中是个非常严格的限制,同时也是大型设备总质量中非常重要的一部分,探索中的工作包括在轨组装,燃料与建造材料的原位资源利用等。然而,可持续的指数增长是构建大尺度空间工业很重要的部分。为了达到以上目标本文提出了指数深空(Exponential Deep Space, EDS)的概念以获得深空工业的指数增长能力。

A systematic method of utilizing solar energy for smelting and fabrication in metallic Near Earth Asteroid (NEA) is proposed in this paper. Solar collector enables in situ melting and forming for structural materials. After that, we utilize a space robot arm system to replicate the solar collector and other key structures include the robot arms itself to enable exponential growth of deep space industries. A reasonable payload has been planned to meet the requirement of the launch system for the initial base package. The key challenge has been analyzed including positioning/attitude of the solar collector, metallurgy problem under micro-gravity/vacuum environment, and the failure rate influences of the autonomous system. Series of evidence of the existence of metallic NEA have been proposed, including the requirement of the properties of the target NEA.

本文介绍了利用太阳能对金属类近地小行星进行熔融与生产的方法体系并进行了基础的评估与理论计算。太阳能收集阵列对金属类小行星本体进行原位加热熔融,这一部分得到了相应的热仿真模型的数据支持。获得了熔融的加热金属后几种结构成型方法进行了评估。之后,我们使用空间机械臂系统复制太阳能收集阵以及包括机械臂本体的其他关键结构以获得空间工业的指数增长。接下来本文计划了适合初始基地包发射运载的质量分配,并对例如太阳能收集阵姿轨控、微重力与真空环境下的冶金问题、自动化系统的失效率等一系列挑战进行了分析。本文还介绍了一系列金属类近地小行星存在性的证据,以及目标近地小行星的一些基本特性需求。

Several potential applications have been evaluated in the 5th section of the paper. Finally, we estimated the sustainable throughput with rational supplements from the earth industry and potential further developments have been discussed.

文章的第五部分评估了一系列潜在的应用。最后,我们估计了在地球工业提供适度补给下上述指数深空可持续的生产规模,以及在这一基础下进一步的展望。

1. Background

2. The method

3. Challenge of engineering

3.1. Solar collector

3.2. Metallurgy and shaping

构件理论强度以加压舱需求为例,晶胞vs冷却速度

3.3. Autonomous system

4. Does metallic NEA exist?

4.1. Evidence

4.1.1. Radar observations

4.1.2. Crate of Greenland

4.1.3. Statistic survey of available crate

4.2. Requirement

4.2.1. Component content

4.2.2. Orbit

4.2.3. Spin

  • Speed
  • Axis attitude

5. Applications

5.1. Solar Power Satellites (SPS)

5.2. Cabin section

5.3. Large scale radio telescope

5.4. Interplanetary transfer vehicle

6. Further developments and conclusion

6.1. Propellant harvest from C/S-type

6.2. Mass driver, Interplanetary launch system (

6.3. Space city (

6.4. The scale (7. conclusion


autonomous breakdown (comparing with lunar1982 etc historically, ImageNet/warcraft etc, should be a awarded challenge contest

  • sensing
  • recognization
  • movement planning
  • online monitoring
  • hierarchical planning/optimization

analysis of failure rate

  • hardware tri redundant
  • software double tri redundant

Reference

MARS GAS STATION: TRANSITION FROM INDEPENDENT MISSIONS OF PROPELLANT PRODUCTION HARDWARE TO EXTRATERRESTRIAL “GAS STATIONS” SUPPORTING REUSABLE LANDERS

The most recent comprehensive mission architecture for human missions to Mars is the NASA Design Reference Architecture V5 (DRA5), which includes in-situ production of liquid oxygen (LOX) from atmospheric methane as a critical mission factor in drastically reducing the mass of oxygen required to be sent to Mars. The atmosphere-only fuel production option is selected, since prospecting and extracting water on Mars was deemed too risky. However, if this problem can be solved, much lower energy processes to produce LOX while at the same time producing methane fuel can be achieved.

This study examined several candidate technologies for methane production on Mars, evaluating the processing requirements, and calculating the energy costs of methane production and storage on the surface. The technology candidates included solid oxide electrolysis (SOXE) to produce LOX only, and several others to produce LOX/methane: Sabatier/electrolysis, Sabatier/SOXE processing, and electrochemical production using ionic liquid cells. In addition to the production energy costs, liquification of the output products as well as energy costs of storage were also calculated.

The study used the detailed designs from the Mars DRA5, augmented with more recent conceptual design specifications of Mars landers from the Evolvable Mars Campaign (EMC). The EMC design has 3 Mars Descent Modules (MDM)s and one Mars Ascent Vehicle (MAV) per human mission. In the EMC design, the propellant production unit fills the MAV tanks for the return to Mars orbit. Using this design envelope, the study calculated the energy increase required to convert from LOX-only, to methane and LOX production, as well as the energy requirements of using the landed mission assets over time to create a Mars gas station infrastructure to provide fuel for the next generation of reusable vehicles. Each human mission would land a power supply, a production plant, and enough storage tanks for its own return flight. However, if these systems continue to produce fuel after the initial mission period, storing the new production in unused landed tanks in the MDMs, then an additional 30t of fuel can be produced per synodic period, per set of landed hardware. After three missions to the same location using this disposable hardware, there would be enough propellant production and storage capability at this Mars base to fully fuel a reusable transport system.
Keywords: (Mars, ISRU, propellant, methane, Sabatier, SOXE)

WHAT’S INSIDE A RUBBLE PILE ASTEROID? DISCUS - ATOMOGRAPHIC TWIN RADAR CUBESAT TO FIND OUT

A large fraction of asteroids with diameter d > 240 m are suspected to be loose piles of rocks
and boulders bound together mainly by gravity and only weak cohesion. Still to date the size
and distribution of voids and monolithic fragments inside these "rubble-piles" are not known.
To perform a full tomographic interior reconstruction a bistatic CubeSat configuration has
been investigated by Tampere University of Technology (TUT), Radar Systemtechnik GmbH
(RST) and the Max Planck Institute for Solar System Research (MPS). The concept is based
on two 6U CubeSats, both carrying an identical 1U sized stepped frequency radar. As stepped
frequency radars can be built compact, require less power and generate less data volume
compared to other radar applications they are well-suited for small satellite platforms. In 2017
the Concurrent Design Facility of ESA/ESTEC conducted two studies relevant for DISCUS. In
the Small Planetary Probes (SPP) study DISCUS served as a reference payload for a piggyback
mission to a Near-Earth Asteroid (NEA) or even a Main Belt Asteroid (MBA). The M-ARGO
study investigated a stand-alone mission to a NEA, with a DISCUS sized instrument. Based
on the spacecraft design of SPP and M-ARGO we could prove the instrument requirements
as feasible and evaluate our science case from the orbits and mission duration that have been
identified by these studies. Using inversion methods developed for medical tomography the
data would allow to reconstruct the large scale interior structure of a small body. Simulations
have shown that the measurement principle and the inversion method are robust enough to
allow full reconstruction of the interior even if the orbits do not cover the entire surface of
the asteroid. The measurement results of the mission will help to gain a better understanding
of asteroids and the formation mechanisms of the solar system. In addition, the findings
will increase the predictability of asteroid impact consequences on Earth and improve future
concepts of asteroid deflection.

Introduction

space industry in need

aim, self bootstrap large scale of industry in space

Background

the isru Survey, state of arts now, [1982Lunar, Donald Rapp, Project RAMA] etc.

limitation, capacity in need of IBP, human/autonomous

exponential [Dyson, .., etc]

Method

ExponentialDeepSpace/exponentialdeepspace.github.io#2 (comment)
metal asteroid

image
mirror/solar pumped laser [Vasile], simulation
加来道雄与nasa some one火星加热规划
mech/magnatics [magnatic float, etc]

zone melting []

powder/thin rolling/cold source []

foil/steel mirror []

robotics [MadeInSpace, orbitRTK, RepSat]
ExponentialDeepSpace/exponentialdeepspace.github.io#7

http://exponentialdeepspace.org/eds-calc/

Plan

plan of IBP [Apollo, 1982Lunar, etc]

scale of exponential

Challenges

in search of M-type

fix position of mirror array

failure rate

Conclusion

the feasibility of eds

Phone call meeting of modeling|rendering|lx, Oct18

Issue by derekoutis
Monday Oct 29, 2018 at 18:30 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/11


Modeling/rendering

#16

Lx

  • the full process, up and down
  • list of potential partnership company
  • budget and time frame
  • concrete architecture, table of choice
    • 电推
    • 磁盾
    • 通信
    • 抛物面
    • 其他

冶金领域顾问需求 #6

  • 铁镍合金熔融/加工性能,90Fe10Ni~68Fe31Ni0.5Co,缺其他元素
  • 轧钢成型
  • 镜面轧钢/无耗材抛光
  • 镜面铝反射层

Phone call meeting of modeling|rendering|lx, Oct18

Issue by derekoutis
Monday Oct 29, 2018 at 18:30 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/11


Modeling/rendering

#16

Lx

  • the full process, up and down
  • list of potential partnership company
  • budget and time frame
  • concrete architecture, table of choice
    • 电推
    • 磁盾
    • 通信
    • 抛物面
    • 其他

冶金领域顾问需求 #6

  • 铁镍合金熔融/加工性能,90Fe10Ni~68Fe31Ni0.5Co,缺其他元素
  • 轧钢成型
  • 镜面轧钢/无耗材抛光
  • 镜面铝反射层

##README

Issue by derekoutis
Monday Oct 29, 2018 at 19:02 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/27


diagram of the proposed exponential deep space industries

Slogan [1]

  • Exponential expanding with solar power and steel forming ability on M-type asteroid in Deep Space.
Informally speaking, it's just a project on automatically duplicate the solar furnace for steel smelting in deep space.

Overall

through the system below:

  1. With adaptive optics reflector
  2. Towards asteroid in M-type
  3. Under the process of Solar focus pit melting
  4. And the process of Rolling/Forming/3D Printing
  5. To duplicate the adaptive optics reflector at exponential scale
  6. Through space robotics and AI system

achieve the goal of limited the supplement from the earth, bootstrap from the Initial Base Package to exponentially scale up the industry in deep space.

Prospective goals

  1. Double the volume of production for each year, get 1 million tonnes per year in 10 to 20 years
  1. It is equivalent to kilos of cabins a year of expansion
  1. While closing and achieved the scale,

Main thread

KSP+Kaggle+Linux+Redhat

  1. KSP kind of open source/free to use simulator
  2. Kaggle kind of community drive
  3. Linux kind of work prototype
  4. Redhat kind of engineering implements

Intelligence systems

Issue by derekoutis
Monday Oct 29, 2018 at 18:30 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/12


Intelligence systems for routine operation

  • computer visual
  • planning
  • robotics #7

Intelligence systems for accident limitation/recovery

  • how?

Reference

Simulations/evaluation and environment setting

Issue by derekoutis
Monday Oct 29, 2018 at 18:33 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/13


the setting:

  • tensorflow solver for ODE/PDE that can be transfered to js or other platforms
  • unity for rigid body simulation

Key nodes need to be simulated/evaluated

the formulae and problem settings of key evaluations

  1. the focus spot of the solar furnace #6
    • the focus spot
    • the scale/potential structure of the solar furnace reflector #5
    • the accuracy of the solar furnace and the requirements of machining and control precision
  2. solar furnace reflector #5
    • simulation of the surface curve, stability/robustness
    • simulation of the controllibility
    • simulation of the monitoring device and observability
    • in-depth for structure: vibration mode/thermal distortion etc
  3. the potential of magnetic torquer to position/attitude the energy site #4
    • the magnetic shield in need
    • the requirement of the magnetic torquer
  4. the machining ability of the raw target asteroid metal (data in need) #6
    • machining ability of the raw material
    • the payload of the IBP #13 of the machining equipment
  5. the consists of payload and propellant in the IBP #13
  6. robotics system #7
    • simulation and evaluation of different task modes/methods
    • the scale of the workload
      • payload and torque
      • mass production
  7. supplements by scale expanding
    • category #11
    • by different stages/scales

Key nodes need to be evaluated in physics at the first stage

  • Mechanical property of iron meteorite, both in low (~100K) and ordinary temperature
  • Ground solar furnace system to melt down iron in tons and rolling/forming

Arrangement of working field

Issue by derekoutis
Monday Oct 29, 2018 at 18:25 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/7


反射阵悬停方式

极地悬停

  • 采集矿坑必须在自转轴焦点附近
  • 反射阵离轴太远有难度,综合限制了反射阵的总规模
    • 500500m左右,矿坑加热尺寸限制在约1010m
    • 开采矿坑深度不断下沉

同步静止轨道

  • 小行星异形引力场可能造成轨道不均匀/摄动敏感

星面设备安置

  • 冶炼、熔融采集 #6
  • 轧钢
  • 成型

季节迁徙

  • 公转/自转交角,自转轴指向

the existence of target asteroids

Issue by derekoutis
Monday Oct 29, 2018 at 18:59 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/26


Asteroid Detection

Methodology

How to find metal-rich asteroids
https://arxiv.org/abs/1403.6346

How Many Ore-Bearing Asteroids?
https://arxiv.org/abs/1312.4450

Observation Resource

Ground

Space

Deep space detector #25

Database and visualization

Monitoring of the field

Issue by derekoutis
Monday Oct 29, 2018 at 18:35 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/14


Solar furnace and other space site tracker

  • Solar furnace #5
    • the reflector units
      • 主要方式
        • 全闭环反馈,实时监控焦点(或可控旁瓣/配合目标成像情况
        • 局部闭环反馈,监控关键节点推算焦点特性
      • 在入射侧若干倍焦点观测矿坑的像
      • 激光扫描光源放置在另一焦点?
        • 每一组焦点镜面需要单独的光源
        • Lidar to feedback, work for mirror
      • 通过测量星空星点位置在反射面的反光确定反射面姿态
        • 对镜面质量敏感
      • 机器视觉3D扫描监控反射单元
  • others

the asteroid field

Related

Issue by derekoutis
Monday Oct 29, 2018 at 18:38 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/17


周边

网站规划

ISRU In-Situ Resource Utilization for exponential scale heavy industry in deep space

  • webGL launch page
    • asteroid from 3D real data
    • 若干极点静止工作站
    • hot spot
    • 3D drag and rot
    • hyperlink on objects
  • key evaluated node in the index of the launch page
    • the solar furnace spot
    • the magnetic torquer for position
    • the precision of assembled solar furnace
  • why isru
    • for the further settlement of an interplanetary species
      • further (partial) self-sustainable industrial
      • settlement for human being
      • science research on space scale
    • what it can do for the earth
      • LEO/ other payloads
      • etc
  • team/related ppl

github issues设计总体框架,逐节点验算/数据调研,物理层通了搞成在线javascript能简单计算performance,然后星座设计3D建模直接搞成webGL在线渲染,可交互随便拖拖拽拽调简单参数

  • key nodes need to be simulated/evaluated
    the formulas and problem settings of key evaluations #16
    • the focus spot of the solar furnace #6
      • the focus spot
      • the scale/potential structure of the solar furnace reflector #5
      • the accuracy of the solar furnace and the requirements of machining and control precision
    • solar furnace reflector #5
      • simulation of the curve, stablility/robustness
      • simulation of the controllibility
      • simulation of the monitoring device and observability
    • the potential of magnetic torquer to position/attitude the energy site #4
      • the magnetic shield in need
      • the requirement of the magnetic torquer
    • the machining ability of the raw target asteroid metal (data in need) #6
      • machining ability of the raw material
      • the payload of the IBP #13 of the machining equipment
    • the consists of payload and propellant in the IBP #13
    • robotics system #7
      • simulation and evaluation of different task modes/methods
      • the scale of the workload
    • supplements by scale expanding
      • category #11
      • by different stages/scales
  • the format of evaluation to be interactively demonstrated in javascript
    • Environment for simulations #16
  • the webGL demonstration of an appealing launch page including (partial) key evaluations
    • with links to further topics

游戏

  • bootstrap基地包
  • 编这个游戏可以选一类星作为主站然后分别偷剩下种类的星,不同的星分别资源禀赋不一样偷其他星难度也不一样
    • 偷彗星
    • C星
    • S星
    • M星
      上面这个游戏正好仿真开采不同星的资源路径
    • Environment for simulations #16

Reference:

  • KSP
  • https://mars-sim.github.io/
    加入了robots的设置
      Add robots (Chef bots, Handyman bots, Garden bots, Medic bots, etc..) to lighten the load of the daily tasks in the settlement. 
    考虑了微流星的影响
      a. Calculate the probability of impact per square meter per sol on the settlement, assuming the meteorite has an average impact velocity of 1km/s, critical diameter of .0016 cm and average density of 1 g/cm^3, per NASA study. 

KS? Mission badge? etc

~

Target asteroid detector

Issue by derekoutis
Monday Oct 29, 2018 at 18:22 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/6


Overview #3

Land observor

Space observor

Direct detector

Rosetta and Philae by ESA

Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P).[8][9]

  • 2.8 × 2.1 × 2.0 m central frame and aluminium honeycomb platform

  • ~3,000 kg, which included the 100 kg (220 lb) Philae lander and 165 kg (364 lb) of science instruments

  • communications suite

    • 2.2 m steerable high-gain parabolic dish antenna
    • a 0.8 m fixed-position medium-gain antenna
    • two omnidirectional low-gain antennas.[51]
  • two solar arrays totalling 64 square metres

    • Each one was subdivided into five solar panels
      • each panel being 2.25 × 2.736 m
        • individual solar cells were made of silicon, 200 μm thick, and 61.95 × 37.75 mm
  • maximum of approximately 1,500 watts at perihelion

  • minimum of 400 watts in hibernation mode at 5.2 AU

  • 850 watts when comet operations begin at 3.4 AU

  • a redundant Terma power module also used in the Mars Express spacecraft,[54][55] and was stored in four 10-A·h NiCd batteries supplying 28 volts to the bus.[51]

Main propulsion comprised 24 paired bipropellant 10 N thrusters,[52] with four pairs of thrusters being used for delta-v burns.

  • The spacecraft carried 1,719.1 kg (3,790 lb) of propellant at launch:

    • 659.6 kg of monomethylhydrazine fuel
    • 1,059.5 kg of dinitrogen tetroxide oxidiser,
    • contained in two 1,108-litre grade 5 titanium alloy tanks and providing delta-v of at least 2,300 metres per second (7,500 ft/s) over the course of the mission. Propellant pressurisation was provided by two 68-litre (15 imp gal; 18 US gal) high-pressure helium tanks.[56]
  • https://en.wikipedia.org/wiki/Rosetta_(spacecraft)

Hayabusa2

IKAROS

Attachments

Arrangement of working field

Issue by derekoutis
Monday Oct 29, 2018 at 18:25 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/7


反射阵悬停方式

极地悬停

  • 采集矿坑必须在自转轴焦点附近
  • 反射阵离轴太远有难度,综合限制了反射阵的总规模
    • 500500m左右,矿坑加热尺寸限制在约1010m
    • 开采矿坑深度不断下沉

同步静止轨道

  • 小行星异形引力场可能造成轨道不均匀/摄动敏感

星面设备安置

  • 冶炼、熔融采集 #6
  • 轧钢
  • 成型

季节迁徙

  • 公转/自转交角,自转轴指向

Overall

Issue by NirViaje
Monday Oct 29, 2018 at 13:57 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/1


0 K2LRchain

ExponentialDeepSpace/exponentialdeepspace.github.io#2 (comment)

Why we need industry in deep space

  • the anchor for the next leap
  • payloads for LEO/other orbit structures

the EDS

Exponential Deep Space

Why asteroid #3

  • Natural M-type, recycling of billion-years scrap metal
    • easy, 70Fe30Ni
    • (million tones enable industrial space city
    • (further to C/S-type with vehicle and equipment #27
  • challenge
    • rotation of asteroids
    • material property and limits
    • robotics in the space (at the exponential scale

How we do

  • #5 Solar furnace
    • #4 magnetic shield and torquer
  • #6 Forming and shaping
  • #7 Robotics

What will this impact

  • enable heavy structure in large-scale
  • space industrial base and city (for multi-purpose
  • the gate of the interplanetary era for human being
    • industrial/inhabit base
    • vehicle for interplanetary transfer
      • extend the industry to C/S-type, and further
    • large scale science research/industry
  • ROI

How to do

It's a long journey.

  • The digital world is easy to be exponential, while the atoms don't.
  • To exponentialize the physical world, what we need are model and resource.
  • It's a data drive company at first, evaluate the models in physics by stages.
  • Close loop the mass and the resource.

(KSP+Kaggle+Linux+Redhat

Community

How to make the Apollo-scale project done while roughly not by the government?

  • KSP+Kaggle for distributed open source contribution of the problem solve
  • grow up the new generation
  • bootstrap the simulated project detail at Phase I, kick-start the physical evaluation

Why start as simulation

  • for a large project at this scale, the plan should be systematic
    • evaluate the situation from all directions
  • make everybody stand on the same page
  • can be extended to games/other related

Evaluate experiments

  • 15 parts of 6 sections in the first stages
  • 6 (?) of them should be physically evaluated in the first (6) years

Engineering

  • demonstration and research on the ground/water tank
  • space evaluation of sub-systems
  • (dedicated detector

Time and roughly budget frame

  • GDoc sheet
  • products
    • KC Communication unit
    • MPT
    • Kaggle mode
    • Cabin

Team and community

  • crews
  • more

Afterword

other project

Conclusion

  • EDS in 20 years

Monitoring of the field

Issue by derekoutis
Monday Oct 29, 2018 at 18:35 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/14


Solar furnace and other space site tracker

  • Solar furnace #5
    • the reflector units
      • 主要方式
        • 全闭环反馈,实时监控焦点(或可控旁瓣/配合目标成像情况
        • 局部闭环反馈,监控关键节点推算焦点特性
      • 在入射侧若干倍焦点观测矿坑的像
      • 激光扫描光源放置在另一焦点?
        • 每一组焦点镜面需要单独的光源
        • Lidar to feedback, work for mirror
      • 通过测量星空星点位置在反射面的反光确定反射面姿态
        • 对镜面质量敏感
      • 机器视觉3D扫描监控反射单元
  • others

the asteroid field

Target asteroid detector

Issue by derekoutis
Monday Oct 29, 2018 at 18:22 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/6


Overview #3

Land observor

Space observor

Direct detector

Rosetta and Philae by ESA

Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P).[8][9]

  • 2.8 × 2.1 × 2.0 m central frame and aluminium honeycomb platform

  • ~3,000 kg, which included the 100 kg (220 lb) Philae lander and 165 kg (364 lb) of science instruments

  • communications suite

    • 2.2 m steerable high-gain parabolic dish antenna
    • a 0.8 m fixed-position medium-gain antenna
    • two omnidirectional low-gain antennas.[51]
  • two solar arrays totalling 64 square metres

    • Each one was subdivided into five solar panels
      • each panel being 2.25 × 2.736 m
        • individual solar cells were made of silicon, 200 μm thick, and 61.95 × 37.75 mm
  • maximum of approximately 1,500 watts at perihelion

  • minimum of 400 watts in hibernation mode at 5.2 AU

  • 850 watts when comet operations begin at 3.4 AU

  • a redundant Terma power module also used in the Mars Express spacecraft,[54][55] and was stored in four 10-A·h NiCd batteries supplying 28 volts to the bus.[51]

Main propulsion comprised 24 paired bipropellant 10 N thrusters,[52] with four pairs of thrusters being used for delta-v burns.

  • The spacecraft carried 1,719.1 kg (3,790 lb) of propellant at launch:

    • 659.6 kg of monomethylhydrazine fuel
    • 1,059.5 kg of dinitrogen tetroxide oxidiser,
    • contained in two 1,108-litre grade 5 titanium alloy tanks and providing delta-v of at least 2,300 metres per second (7,500 ft/s) over the course of the mission. Propellant pressurisation was provided by two 68-litre (15 imp gal; 18 US gal) high-pressure helium tanks.[56]
  • https://en.wikipedia.org/wiki/Rosetta_(spacecraft)

Hayabusa2

IKAROS

Attachments

Overall

Issue by NirViaje
Monday Oct 29, 2018 at 13:57 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/1


0 K2LRchain

ExponentialDeepSpace/exponentialdeepspace.github.io#2 (comment)

Why we need industry in deep space

  • the anchor for the next leap
  • payloads for LEO/other orbit structures

the EDS

Exponential Deep Space

Why asteroid #3

  • Natural M-type, recycling of billion-years scrap metal
    • easy, 70Fe30Ni
    • (million tones enable industrial space city
    • (further to C/S-type with vehicle and equipment #27
  • challenge
    • rotation of asteroids
    • material property and limits
    • robotics in the space (at the exponential scale

How we do

  • #5 Solar furnace
    • #4 magnetic shield and torquer
  • #6 Forming and shaping
  • #7 Robotics

What will this impact

  • enable heavy structure in large-scale
  • space industrial base and city (for multi-purpose
  • the gate of the interplanetary era for human being
    • industrial/inhabit base
    • vehicle for interplanetary transfer
      • extend the industry to C/S-type, and further
    • large scale science research/industry
  • ROI

How to do

It's a long journey.

  • The digital world is easy to be exponential, while the atoms don't.
  • To exponentialize the physical world, what we need are model and resource.
  • It's a data drive company at first, evaluate the models in physics by stages.
  • Close loop the mass and the resource.

(KSP+Kaggle+Linux+Redhat

Community

How to make the Apollo-scale project done while roughly not by the government?

  • KSP+Kaggle for distributed open source contribution of the problem solve
  • grow up the new generation
  • bootstrap the simulated project detail at Phase I, kick-start the physical evaluation

Why start as simulation

  • for a large project at this scale, the plan should be systematic
    • evaluate the situation from all directions
  • make everybody stand on the same page
  • can be extended to games/other related

Evaluate experiments

  • 15 parts of 6 sections in the first stages
  • 6 (?) of them should be physically evaluated in the first (6) years

Engineering

  • demonstration and research on the ground/water tank
  • space evaluation of sub-systems
  • (dedicated detector

Time and roughly budget frame

  • GDoc sheet
  • products
    • KC Communication unit
    • MPT
    • Kaggle mode
    • Cabin

Team and community

  • crews
  • more

Afterword

other project

Conclusion

  • EDS in 20 years

Space robotics and further manufacture

Issue by derekoutis
Monday Oct 29, 2018 at 18:50 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/22


本体

固定与运动方式

  • 固连于小行星参考系
    • 半永久磁力锚定
    • 机械永久锚定
  • 脚手架移动与供电
  • 空间推进运动

操纵方式

  • 关节臂
  • 夹爪等执行器

控制 #17

执行

  • 硬件控制
  • 目标匹配
    • 视觉方法
      • 机器视觉
      • 3D成像
    • 其他方法
  • 运动规划

验证

  • 执行验证
    • 系统级验证
    • 物理级测试
  • 差错补救
  • 避免差错范围扩散

辐射加固

  • 轻量化模块化要求

供电与通信

  • 供电 #14
    • 脚手架接触轨
    • 拖缆
    • 太阳能帆板
      • 尺寸
      • 重量
      • 输出功率
      • 工况
  • 通信
    • 无线通信
    • 光通信

任务

冶炼成形过程上下料

  • 消除小行星表面随自转成形工件的旋转动量
  • 交付下一道工序

空间反射面施工

  • 脚手架装配
  • 反射面装配

仓储与出入库

  • 入库
  • 出库

结构装配

  • 可装配接口设计
  • 脚手架装配
  • 机械臂装配
  • 其他设备安装装配

3D打印及其他标准原料为基础材料成型

  • 金属打印
    • SLM
    • arc FDM, etc
  • 型材加工
    • 切割
    • 孔位等
  • 板材加工
    • 切割
    • 折弯钣金等

Reference

==========
Attachments for backup:
On-Orbit Manufacturing and Assembly of Spacecraft, IDA, 2017_P-8335.pdf

theEDSnovel

白钢原野:为什么要制造一起上十亿年的废旧金属回收(案件

I. 发射日

发射日

  • 如何寻找目标星
  • 如何抵达

矿坑事故

地面试验

视频

矿坑现场

工程公司

社群

II. 第一块钢

第一块钢

开放架构

烧钢的电推

GaN半导体

CIGS in space

缘起

玻璃幕墙与大镜子

纷争与偶遇

沸腾的蒸汽朋克与大狗

Recruit the community

III. 全钢的拖船

全钢的拖船

第一次回到地球

  • 不包括返回舱的第一次?
  • 地球的人类

复制多少面镜子才够

磁塔事故2

3D电磁弹珠

同步轨道

与地面幕墙从赤道轴出射的火焰

IV. 当机器比任何人类都了解自己

当机器比任何人类都了解自己

近轨实验室(LEO

有了十万吨应该做什么

第一次的人类

黑石还是2012

虚.. .惊

如何卖掉前哨阵地

地面指挥中心

V. 第二批,要不要百万吨

第二批,要不要百万吨

蜂群,机器的蜂群

制造一座钢铁的太空旅馆

你们需要农业

地球上的人们想要一座钢铁新城吗

一千倍的镜子

如果你们要熔掉一颗星

烧掉一颗星,制造轮胎还是铁罐

(变成城市

VI. 文明如何跨越大西洋,以及人们需要种植园吗

文明如何跨越大西洋,以及人们需要种植园吗

呼叫精装修

镜子如何变成星球的拖船

巨大的科学

镜子城市里的火箭人红色帝国

释放AI到太空

后记:一块上十亿年的破石头为什么被称作星际之门

  • 它通向上一次星系爆发的时刻

剧本

剧本有很多空的地方有很多比如地球现实社会以及其他空间项目的内容涉及不多,大家往里面填

希望是足够近又足够远

第一季

入场单位设定

  • 国家测控中心
  • 深空工业基金会
    • 产业理事会单位
  • 深空建工
  • 某小型太空运载公司
  • 近地实验空间站
  • 高校月球项目等
  • 某国航天局回答环月轨道站设计与细节问题
  • 深空建工市场部
  • **国家空间站
  • 科院某行星科学家单位
  • 环月轨道站用大型兆瓦级电推研发单位
  • 月轨空间站
  • 人类月球基地,月面水搜集与燃料工厂
  • 行星防御计划国际会议
  • 某校立方星团队
  • 火星模拟基地夏令营
  • 国家火星联合项目
  • 火卫轨道站

第一集

第一幕

2045年里程碑性质的意义发生(编剧深空元年),人类开始大规模直接利用小行星金属资源,进行生产建设和制造

地面控制室,在轨空间站实验中心,国家测控中心

国家测控中心遥测负责人作为单位主力女一号,协调空地/全球范围内深空射电资源

  • 深空工业基金会协调目前的整个实验性小行星资源利用项目,大量产业公司参与
  • 理事会单位在轨空间建造的深空建工,从在轨建设入手,里程碑项目是深空射电望远镜

人类冶炼出太空第一块钢梁

第二幕

镜头闪回到二十年前,政府登月/月轨空间站项目,商业太空公司初显,低轨通信/大量cubesat实验卫星,小型的太空运载公司,第一批太空旅游游客(重型空间物质运载仍然成本很高,月轨空间站总投资

第三幕

地球突发小行星陨石雨,车里雅宾斯克级事件开始每年规律性发生,造成小型损失,各国政府行星防御计划出面,表示持续跟踪已知某小行星近邻,但未知引力摄动碰撞导致一对小行星产生撞击云状碎片,人们在陨石中观测到某一颗母星的纯金属组份,少数人开始意识到这是绝佳的空间资源来源,某航天圈科技记者出镜

第四幕

深空建工CTO意识到高中发表被人忽略不计的论文重大意义,重新启动深空工业基金会

第五幕

空间冶炼系统工作,近地实验空间站同比实验调整工艺参数,研究冶炼成型性质,alex辅助AI机器人帮助航天员实验,同时复制产生整个AI实验备份将来帮助仿真,上传到小行星现场

第六幕

镜头闪回高校月球探测器,龙江一号原型,全球无线电爱好者遥测接收,荷兰射电特写,主要人物年轻研究生项目负责人监控遥测数据状态分析科学意义,深空建工射电镜辅助遥测工作

第七幕

在某国际会议上某国航天局回答环月轨道站设计与细节问题,某公司市场部与另一个国家月轨立方星验证项目(可以是**留学生入职)沟通实验结果(为了避开ITAR限制可以是**出口,或者是某组件从欧洲进口

第八幕

小行星资源测试实验因为月面基地的数据跟踪受到影响?辐射故障?没想好,抛出个危机,本集结束

第二集

第一幕

镜头闪回从**国家空间站开始,微重力液态金属实验,舱外机械臂对接,某航天员出镜,与地面遥测对话,说两个互相熟悉的梗

第二幕

某行星科学家出镜,分析月面镜返回的天平动数据,了解月球极轴变化的引力摄动情况,这时有人提到国家推动行星防御工程参与国际合作

第三幕

研发环月轨道站使用的大型兆瓦级电推,相关人出镜

第四幕

以下没想好,本集主要解决上集小行星开发遇到的问题,带出出场人物,可以和液态金属特性有关blahblah

第三集

镜头闪回十几年前,小行星探测器母舰,释放一系列一张星逐个筛选探测,讨论下一代母舰绕行访航通过月轨空间站加注燃料和一张星补给,某小型运载火箭公司总工研发一张星出镜,和第一集国际会议讨论月轨探测器是一家公司剧情连起来

小行星星面工厂开始试产建造结构钢,空间搭建机器人系统出镜,提到美国2016年前后开始立项之后启发一系列在轨建造公司,包括深空建工(宇宙建工?)机器人组装机械臂特写,提到将来只需要发射机械臂关节

月轨空间站紧密监控,因为某不为人知的bug?太阳能收集阵定轨问题?与地面测控中心女boss联系,VLSI遥测监控小行星轨道站情况?

智能系统在位置环境局限,需要地球低轨实验站微重力实验配合以及全球的后勤配合,根据参数训练新的AI部署?补充小行星实验环境新的数据完成地面及轨道站的仿真与实验训练新AI上传到小行星作业面现场

第四集

镜头闪回十年前的人类月球基地,月面水搜集与燃料工厂,上升段运载到环月轨道为其他深空任务补充燃料,探测器与卫星可以在环绕一年时间之后补充燃料,人类空间任务获得前所未有的机动性(但是仍然是有非常大局限的,可以秀一下轨道设计工程等各种计算工具结果,简单讲解,轨道科学家大李出镜,提到Bob Farquhar的传奇一生,ISEE轨道设计,麦当劳劫持卫星

小行星原料搭建第一个轨道设备,补给飞船在环月站加油运送升级备份系统

十几年前地面上的社会问题,与小行星事件,资本的科技投入边际递减,失业与AI溢出,迫使人类投向太空

第五集

深空建工在这之前成立,聚集在轨建造项目,从太阳能电池支架开始,早期艰难验证,地面试验失败,地面验证上天失败,说服客户,展会,某公司市场部入镜

大李转向国家行星防御计划,国际会议发言多星动量交换变轨机制,下一步着力解决小行星探测难题,策划国家小天体巡天望远镜与抵近探测器

某校立方星团队探测器搭载某小型机动运载火箭公司上天,讨论起下一代探测器,微型航天母舰概念与一张星诞生,想起来会议上大李的报告,取得联系

空间站深空实验环境局限,仍然无法解决小行星作业面连续产能,作为标杆项目基金会向国际社会承诺的产能无法完成,动摇产业链参与方决心,不可能发射第三艘补给飞船了

月球基地结构件工业项目推进,局势上互相竞争,火星登陆项目也马上启动成功

第六集

十几年前KSP的初中生,这个墨西哥电脑游戏逼真的反应了太空运载工程,一伙同学伙伴制作周边,参与火星模拟基地夏令营,这个时候发现一套太空建造工程的插件,可以建设大尺度的空间构造物,例程包括太空射电/太空电站等,一伙人开始制造宇宙奇观(有人喊连戴森球都是有可能的

初中生后来就是深空建工的地面载荷工程师东子,这次任务他感到很棘手一方面年轻另一方面虽事事考虑但是超出想象的局面太多,和项目组同事一筹莫展,外界压力也很大,有人评论骗子项目,组里有人说起当年的隼鸟项目第一颗探测器克服的困难,有人吐槽按照TRL技术成熟指数的要求很多单元测试都没有完成TRL5这也敢发射,然后有人回嘴说地面和低轨测试不足以到TRL7,月轨实验也不能完全解决问题因为轨道特性和深空条件blahblah

小型运载火箭公司的CTO来拜访,聊起十几年前的谈话,当时的夏令营作为顾问,东子最后受到启发想到解决办法,训练了新的融合各种探测器数据的深空AI

第七集

国家火星联合项目的基础数据为载人火星项目起到了重要作用(此处应当埋个坑),火星项目的中方载荷航天员向基地传回进一步发现,火星飞船仍然在路上成功预测了着陆地区的潜在风暴

二十年前,blahblah

二十年前建国一百周年100AU的探测器发射

小行星作业,blahblah,提到过去小行星资源建设火卫轨道站,以及通过火卫轨道tether系统完成接近太空电梯的能力,电磁弹射伏笔

第八集

成功攻克小行星资源连续生产困难,有机会实现原定目标,各方向基金会贺喜

通过月轨加注燃料转运火星物资

镜头转回十年前着手部署火星原位燃料生产,某公司参与中方竞标,深空建工有意提供太阳能支架支持但方案被否

遥测中心女一把手监测最后数据,火星乘员即将着陆

第九集

火星学会等的火星生活与工业模拟实验,火星夏令营,当年的初中生现在机组的大气与环境载荷专家,着陆前从过去回想到现在,人类的这一步就要成真了

深空工业基金会产业成员会议,大家祝贺目前的顺利生产并且感谢深空建工作为轨道站与作业系统总包的重要作用,其他产业公司出镜,在轨制造薄膜光伏系统撕逼回顾,预计上下一期系统,基金会下期系统目标,国家观察员致辞,其他资源目标开始竞争

火星登陆成功,进入观测站工作,搜集火星水文土壤及大气数据,拜访人类火星探测器遗址。

第十集

首架由深空资源结构钢建造的货运拖船完成,启动数百千瓦级电推引擎,把首批小行星资源与冶炼样品拖回地球近地轨道空间站,预计飞行半年时间,小行星电拖船预计环月轨道站加注燃料,地面开始讨论环月空间站扩建采购深空结构钢构件,更多资源探测器发射

月球站下一代建设计划,月球建材,更多人参与旅游项目,项目推销广告和展会,以及火星探险项目宣传

某地面感情线推进。

到此时止深空三年。

第十一集

第十二集

明天再说

在某个地方致敬毛子暴风雪号?德国Speyer工业博物馆

地面人工智能GAN自动渲染的电影,每个人都可以电影创作,甚至一个镜头都不用拍说话就行



剧情还比较散

啥地方搞个重口味非洲航天员?

火星种菜实习生

建国一百周年100AU探测器飞出太阳系

片头曲从宇宙大爆炸开始往回拉,各种探测工具,各种科学卫星,各类型大型射电,月球车火星车,各种飞机稿不靠谱未立项空间望远镜效果图,天琴引力波,历史上的空间站空间城市空间弹射器方案,一直收缩到黑洞吸积盘之外,主角群像,燃

国家木星探测器,主带小行星探测器

某国家二十年前默默攒好关键技术,这个时候突然暴露近年建设的空间工业中心,巨大的小行星一部分被电推拖船直线加速拖回地球轨道,(后受控偏转砸向月球,爆发出许多颗氢弹的能量

国际星际物质转移运输与监控法案推出,管理所有人造天体轨道行为,纳入行星防御工程重点改名行星监控与防御联合办公室



第二十集

(辐射那段可以跟太阳爆发联系起来

小行星分布式空间建设系统因为空间高能辐射进化学习癌变,侵入**计算机预备接管控制系统,同时某些关键通信链路辐射打坏失联

癌变过程中开始进化淘汰出现智能的偏好与目的

也许能够治疗清洗智能癌变,但,下一个时代,人类与机器共生?竞争?现在机器掌握了大规模的建造能力,人类唯一可以控制的就是芯片供应(癌变部分要不要再留到二十集,完成在轨CIGS太阳能电池制造能力为止,这样机器也可以摆脱人类的能源系统供给,甚至已经完成了在轨大规模全电拖船建造

深空十年,五十万吨产能

第二季

  • 大规模太空城市
  • 拉格朗日轨道站
  • C类资源偏轨交会
  • 建设火卫空间站,遥控火面施工
  • 月球金属工厂,铝
  • 电磁弹射运载
  • 大型天基激光阵列
  • 地球同步轨道空间电站
  • 主带小行星资源利用
  • 深空AI继续演进,开始操作巨大规模的工程,资源进一步在轨利用,芯片战争,新一代芯片

Solar panel

Related

Issue by derekoutis
Monday Oct 29, 2018 at 18:38 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/17


周边

网站规划

ISRU In-Situ Resource Utilization for exponential scale heavy industry in deep space

  • webGL launch page
    • asteroid from 3D real data
    • 若干极点静止工作站
    • hot spot
    • 3D drag and rot
    • hyperlink on objects
  • key evaluated node in the index of the launch page
    • the solar furnace spot
    • the magnetic torquer for position
    • the precision of assembled solar furnace
  • why isru
    • for the further settlement of an interplanetary species
      • further (partial) self-sustainable industrial
      • settlement for human being
      • science research on space scale
    • what it can do for the earth
      • LEO/ other payloads
      • etc
  • team/related ppl

github issues设计总体框架,逐节点验算/数据调研,物理层通了搞成在线javascript能简单计算performance,然后星座设计3D建模直接搞成webGL在线渲染,可交互随便拖拖拽拽调简单参数

  • key nodes need to be simulated/evaluated
    the formulas and problem settings of key evaluations #16
    • the focus spot of the solar furnace #6
      • the focus spot
      • the scale/potential structure of the solar furnace reflector #5
      • the accuracy of the solar furnace and the requirements of machining and control precision
    • solar furnace reflector #5
      • simulation of the curve, stablility/robustness
      • simulation of the controllibility
      • simulation of the monitoring device and observability
    • the potential of magnetic torquer to position/attitude the energy site #4
      • the magnetic shield in need
      • the requirement of the magnetic torquer
    • the machining ability of the raw target asteroid metal (data in need) #6
      • machining ability of the raw material
      • the payload of the IBP #13 of the machining equipment
    • the consists of payload and propellant in the IBP #13
    • robotics system #7
      • simulation and evaluation of different task modes/methods
      • the scale of the workload
    • supplements by scale expanding
      • category #11
      • by different stages/scales
  • the format of evaluation to be interactively demonstrated in javascript
    • Environment for simulations #16
  • the webGL demonstration of an appealing launch page including (partial) key evaluations
    • with links to further topics

游戏

  • bootstrap基地包
  • 编这个游戏可以选一类星作为主站然后分别偷剩下种类的星,不同的星分别资源禀赋不一样偷其他星难度也不一样
    • 偷彗星
    • C星
    • S星
    • M星
      上面这个游戏正好仿真开采不同星的资源路径
    • Environment for simulations #16

Reference:

  • KSP
  • https://mars-sim.github.io/
    加入了robots的设置
      Add robots (Chef bots, Handyman bots, Garden bots, Medic bots, etc..) to lighten the load of the daily tasks in the settlement. 
    考虑了微流星的影响
      a. Calculate the probability of impact per square meter per sol on the settlement, assuming the meteorite has an average impact velocity of 1km/s, critical diameter of .0016 cm and average density of 1 g/cm^3, per NASA study. 

KS? Mission badge? etc

~

Solar panel

Simulations/evaluation and environment setting

Issue by derekoutis
Monday Oct 29, 2018 at 18:33 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/13


the setting:

  • tensorflow solver for ODE/PDE that can be transfered to js or other platforms
  • unity for rigid body simulation

Key nodes need to be simulated/evaluated

the formulae and problem settings of key evaluations

  1. the focus spot of the solar furnace #6
    • the focus spot
    • the scale/potential structure of the solar furnace reflector #5
    • the accuracy of the solar furnace and the requirements of machining and control precision
  2. solar furnace reflector #5
    • simulation of the surface curve, stability/robustness
    • simulation of the controllibility
    • simulation of the monitoring device and observability
    • in-depth for structure: vibration mode/thermal distortion etc
  3. the potential of magnetic torquer to position/attitude the energy site #4
    • the magnetic shield in need
    • the requirement of the magnetic torquer
  4. the machining ability of the raw target asteroid metal (data in need) #6
    • machining ability of the raw material
    • the payload of the IBP #13 of the machining equipment
  5. the consists of payload and propellant in the IBP #13
  6. robotics system #7
    • simulation and evaluation of different task modes/methods
    • the scale of the workload
      • payload and torque
      • mass production
  7. supplements by scale expanding
    • category #11
    • by different stages/scales

Key nodes need to be evaluated in physics at the first stage

  • Mechanical property of iron meteorite, both in low (~100K) and ordinary temperature
  • Ground solar furnace system to melt down iron in tons and rolling/forming

##In-Situ Resource Utilization and other asteroid utilization program

Issue by derekoutis
Monday Oct 29, 2018 at 18:45 GMT
Originally opened as https://github.com/derekoutis/ExponentialDeepSpace/issues/19


Asteroid utilization program survey

ISRU

Other related project

Investment

Welcome

Step 1: Enable GitHub Pages

Welcome to GitHub Pages and Jekyll 🎉!

In this course, you'll learn how to build and host a GitHub Pages site. With GitHub Pages, you can host content like documentation, resumes, or any other static content you’d like.

In this course, you'll create a blog hosted on GitHub Pages and learn how to:

  • Enable GitHub Pages
  • Use Jekyll, a static site generator
  • Customize Jekyll sites with a theme and content

New to GitHub?

For this course, you'll need to know how to create a branch on GitHub, commit changes using Git, and open a pull request on GitHub. If you need a refresher on the GitHub flow, check out the the Introduction to GitHub course.

⌨️ Activity: Turn on GitHub Pages

The first step to publishing your blog to the web is to enable GitHub Pages on this repository 📖. When you enable GitHub Pages on a repository, GitHub takes the content that's on the master branch and publishes a website based on its contents.

  1. Under your repository name, click Settings
  2. In the "GitHub Pages" section, use the Select source drop-down menu to select the master branch as your GitHub Pages publishing source.
  3. Click Save

After GitHub Pages is enabled, we'll be ready to create some content.

For a printable version of the steps in this course, check out the Quick Reference Guide.

Turning on GitHub Pages creates a deployment of your repository. I may take up to a minute to respond as I await the deployment.


Return to this issue for my next comment

Sometimes I respond too fast for the page to update! If you perform an expected action and don't see a response from me, wait a few seconds and refresh the page for your next steps.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.