Git Product home page Git Product logo

utm's Introduction

utm

Bidirectional UTM-WGS84 converter for python

Usage

>>> import utm

Latitude/Longitude to UTM

Convert a (latitude, longitude) tuple into an UTM coordinate:

>>> utm.from_latlon(51.2, 7.5)
(395201.3103811303, 5673135.241182375, 32, 'U')

The syntax is utm.from_latlon(LATITUDE, LONGITUDE).

The return has the form (EASTING, NORTHING, ZONE_NUMBER, ZONE_LETTER).

You can also use NumPy arrays for LATITUDE and LONGITUDE. In the result EASTING and NORTHING will have the same shape. ZONE_NUMBER and ZONE_LETTER are scalars and will be calculated for the first point of the input. All other points will be set into the same UTM zone. Therefore it's a good idea to make sure all points are near each other.

>>> utm.from_latlon(np.array([51.2, 49.0]), np.array([7.5, 8.4]))
(array([395201.31038113, 456114.59586214]),
 array([5673135.24118237, 5427629.20426126]),
 32,
 'U')

UTM to Latitude/Longitude

Convert an UTM coordinate into a (latitude, longitude) tuple:

>>> utm.to_latlon(340000, 5710000, 32, 'U')
(51.51852098408468, 6.693872395145327)

The syntax is utm.to_latlon(EASTING, NORTHING, ZONE_NUMBER, ZONE_LETTER).

The return has the form (LATITUDE, LONGITUDE).

You can also use NumPy arrays for EASTING and NORTHING. In the result LATITUDE and LONGITUDE will have the same shape. ZONE_NUMBER and ZONE_LETTER are scalars.

>>> utm.to_latlon(np.array([395200, 456100]), np.array([5673100, 5427600]), 32, 'U')
(array([51.19968297, 48.99973627]), array([7.49999141, 8.3998036 ]))

Since the zone letter is not strictly needed for the conversion you may also the northern parameter instead, which is a named parameter and can be set to either True or False. Have a look at the unit tests to see how it can be used.

The UTM coordinate system is explained on this Wikipedia page.

Speed

The library has been compared to the more generic pyproj library by running the unit test suite through pyproj instead of utm. These are the results:

  • with pyproj (without projection cache): 4.0 - 4.5 sec
  • with pyproj (with projection cache): 0.9 - 1.0 sec
  • with utm: 0.4 - 0.5 sec

NumPy arrays bring another speed improvement (on a different computer than the previous test). Using utm.from_latlon(x, y) to convert one million points:

  • one million calls (x and y are floats): 1,000,000 × 90µs = 90s
  • one call (x and y are numpy arrays of one million points): 0.26s

Development

Create a new virtualenv and install the library via pip install -e .. After that install the pytest package via pip install pytest and run the unit test suite by calling pytest.

Changelog

see CHANGELOG.rst file

Authors

License

Copyright (C) 2012 Tobias Bieniek <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

utm's People

Contributors

turbo87 avatar renovate[bot] avatar bartvanandel avatar eumiro avatar astrojuanlu avatar psotres avatar tibnor avatar heathhenley avatar r-barnes avatar jamesparrott avatar thebb avatar arnaldorusso avatar swechencheng avatar hubble1942 avatar renovate-bot avatar sdhiscocks avatar chlxt avatar hogend avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.