Git Product home page Git Product logo

ghc19-groversearch's Introduction

This repository has been archived. Please refer to this tutorial on Grover's search with Q# for the latest version of the tutorial.

Introduction

This repository contains the materials for the "Introduction to Quantum Computing with Grover's Search" workshop, presented at Grace Hopper Celebration 2019.

Quantum computing harnesses the laws of nature to enable new types of algorithms, impossible on traditional computers, that can lead to breakthroughs in crucial areas like catalysis discovery.

In this workshop you will learn one of the core quantum algorithms, Grover's search, in a hands-on quantum programming tutorial. You will implement the algorithm in Q# and see how it enables a quadratic speedup for solving search problems.

Running the Tutorial

You can run the tutorial online here.

Alternatively, you can install Jupyter and Q# and qsharp package for Python, and run the tutorial locally by navigating to this folder and starting the notebook from command line using the following command:

jupyter notebook ExploringGroversAlgorithmTutorial.ipynb

The Q# project in this folder contains the back-end of the tutorial and is not designed for direct use.

The Scope

Grover's search algorithm is a massive topic that can hardly be covered in a single tutorial. We had to make some hard choices when we designed this tutorial to cover the most interesting and accessible ideas about the algorithm and still fit the workshop in one hour!

This tutorial will:

  • introduce you to the general problem solved by the Grover's algorithm,
  • walk you through some of the practical aspects of the algorithm,
  • and teach you to write code to explore applying them to a task of solving SAT problems using the Q# programming language.

In the last section of the tutorial you will continue exploration of Grover's algorithm in a companion Python notebook that will use the code we've written to build some interesting graphs and discuss some further properties of the algorithm.

This tutorial will not:

  • walk you through the Grover's algorithm implementation from scratch - if you're looking to learn the low-level implementation details, check out GroversAlgorithm quantum kata,
  • teach you to code quantum oracles that implement interesting functions for Grover's algorithm to invert - if you're looking to learn more about implementing quantum oracles, check out SolveSATWithGrover or GraphColoring quantum katas which cover writing oracles for solving SAT problems and graph coloring problems, respectively.

Further Reading

A great paper on applications of Grover's search algorithm is "Is Quantum Search Practical?" by George F. Viamontes, Igor L. Markov, and John P. Hayes.

If you want to learn more about quantum computing and Q# programming, check out the Quantum Katas project which contains more programming tutorials, including the tutorial on Deutsch-Jozsa algorithm featured at GHC 18.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

ghc19-groversearch's People

Contributors

microsoftopensource avatar msftgits avatar tcnickolas avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.