Git Product home page Git Product logo

mudata's Introduction

Documentation Status PyPi version

MuData – multimodal data

Please refer to the MuData documentation here.

Data structure

In the same vein as AnnData is designed to represent unimodal annotated datasets in Python, MuData is designed to provide functionality to load, process, and store multimodal omics data.

MuData
  .obs     -- annotation of observations (cells, samples)
  .var     -- annotation of features (genes, genomic loci, etc.)
  .obsm    -- multidimensional cell annotation, 
              incl. a boolean for each modality
              that links .obs to the cells of that modality
  .varm    -- multidimensional feature annotation, 
              incl. a boolean vector for each modality
              that links .var to the features of that modality
  .mod
    AnnData
      .X    -- data matrix (cells x features)
      .obs  -- cells metadata (assay-specific)
      .var  -- annotation of features (genes, peaks, genomic sites)
      .obsm
      .varm
      .uns
  .uns

Overview

Input

MuData can be thought of as a multimodal container, in which every modality is an AnnData object:

from mudata import MuData

mdata = MuData({'rna': adata_rna, 'atac': adata_atac})

If multimodal data from 10X Genomics is to be read, convenient readers are provided by muon that return a MuData object with AnnData objects inside, each corresponding to its own modality:

import muon as mu

mu.read_10x_h5("filtered_feature_bc_matrix.h5")
# MuData object with n_obs × n_vars = 10000 × 80000 
# 2 modalities
#   rna:	10000 x 30000
#     var:	'gene_ids', 'feature_types', 'genome', 'interval'
#   atac:	10000 x 50000
#     var:	'gene_ids', 'feature_types', 'genome', 'interval'
#     uns:	'atac', 'files'

I/O with .h5mu files

MuData objects represent modalities as collections of AnnData objects. These collections can be saved to disk and retrieved using HDF5-based .h5mu files, which design is based on .h5ad file structure.

import mudata as md

mdata_pbmc.write("pbmc_10k.h5mu")
mdata = md.read("pbmc_10k.h5mu")

It allows to effectively use the hierarchical nature of HDF5 files and to read/write AnnData object directly from/to .h5mu files:

adata = md.read("pbmc_10k.h5mu/rna")
md.write("pbmc_10k.h5mu/rna", adata)

mudata's People

Contributors

gtca avatar ilia-kats avatar mffrank avatar bv2 avatar weilerp avatar pjb7687 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.