Git Product home page Git Product logo

nise_2017's Introduction

NISE_2017

This is the current development version of a quantum classical package for calculating coherent multidimensional spectra (as FTIR, SFG, 2DIR, 2DES, 2DIRraman, 2DSFG, and F-2DES).

General Description

The NISE3.1 code was originally developed by Thomas la Cour Jansen. Please, cite the appropriate references [1–6] when publishing work using this code. The code allows the calculation of the linear absorption,linear dichroism, sum-frequency generation, two-dimensional spectra (IR,UVvis, and SFG), population transfer, exciton diffusion and integrated anisotropy using the full nonadiabatic semi-classical numerical integration of the Schrödinger equation approach [2] and the sparse matrix optimization approach [4]. The code allows treating spectra of diverse systems involving intra- and intermolecular energy transfer [1,3,7–9], non-Gaussian dynamics [10, 11], surfaces [5], and chemical exchange [12]. This manual is not intended as an introduction to two-dimensional spectroscopy. The user is directed to the references including recent reviews [2,13–16,20] and books for more information [17–19]. The code use wavenumbers for frequencies and times are femtoseconds. The transition dipoles and transition polarizabilities may be given in any desired units. This version has MPI and OpenMP implementation for parallel use for all 2D methods [21]. Feedback on the program and the manual are welcome via e-mail: [email protected] or contribute an issue on the gitHub repository. Change in the code is allowed, but on own risk, and should be reported clearly in publications. Redistribution of the code must happen in accordance with the license.

Hamiltonians for the NISE code can be created with the AIM program [22,23]. An external tutorial is available [24] and a YouTube video demonstration of the installation of the programme [25].

References

  1. T. L. C. Jansen and J. Knoester. J. Phys. Chem. B, 110:22910–22916, (2006).
  2. T. L. C. Jansen and J. Knoester. Acc. Chem. Res., 42(9):1405–1411, (2009).
  3. T. L. C. Jansen, B. M. Auer, M. Yang and J. L. Skinner. J. Chem. Phys., 132:224503, (2010).
  4. C. Liang and T. L. C. Jansen. J. Chem. Theory Comput., 8:1706–1713, (2012).
  5. C. Liang, M. Louhivuori, S. J. Marrink, T. L. C. Jansen and J. Knoester. J. Phys. Chem. Lett., 4:448–452, (2013).
  6. C. D. N. van Hengel, K. E. van Adrichem and T. L. C. Jansen, J. Chem. Phys. 158, 064106 (2023)
  7. D. Cringus, T. L. C. Jansen, M. S. Pshenichnikov and D. A. Wiersma. J. Chem. Phys., 127:084507, (2007).
  8. T. L. C. Jansen and J. Knoester. Biophys. J., 94:1818–1825, (2008).
  9. A. G. Dijkstra, T. L. C. Jansen and J. Knoester. J. Phys. Chem. A, 114:7315–7320, (2010).
  10. T. L. C. Jansen, D. Cringus and M. S. Pshenichnikov. J. Phys. Chem. A, 113:6260, (2009).
  11. S. Roy, M. S. Pshenichnikov and T. L. C. Jansen. J. Phys. Chem. B, 115:5431–5440, (2011).
  12. T. L. C. Jansen and J. Knoester. J. Chem. Phys., 127:234502, (2007).
  13. P. Hamm, M. H. Lim and R. M. Hochstrasser. J. Phys. Chem. B, 102:6123–6138, (1998).
  14. R. M. Hochstrasser. Chem. Phys., 266(2-3):273–284, (2001).
  15. M. Cho. Chem. Rev., 108:1331, (2008).
  16. S. Mukamel. Annu. Rev. Phys. Chem., 51:691, (2000).
  17. M. Cho. Two-dimensional Optical Spectroscopy. CRC Press, Boca Raton, 2009.
  18. S. Mukamel. Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York, 1995.
  19. P. Hamm and M. T. Zanni. Concepts and Methods of 2D Infrared Spectroscopy. Cambridge University Press, Cambridge, 2011.
  20. T. L. C. Jansen J. Chem. Phys. 155 (17): 170901, (2021)
  21. A. S. Sardjan, F. P. Westerman, J. P. Ogilvie, and T. L. C. Jansen, J. Phys. Chem. B 124: 9420-9427 (2020).
  22. K. E. van Adrichem and T. L. C. Jansen, J. Chem. Theory Comput. 18: 3089–3098 (2022).
  23. AIM: https://github.com/Kimvana/AIM
  24. NISE Tutorials: https://github.com/GHlacour/NISE_Tutorials
  25. NISE installation video: YouTube

nise_2017's People

Contributors

ghlacour avatar fwest98 avatar cdhengel avatar vitaminb2701 avatar kimvana avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.