Git Product home page Git Product logo

contracts-bedrock's Introduction

Optimism Smart Contracts (Bedrock)

codecov

This package contains the smart contracts that compose the on-chain component of Optimism's upcoming Bedrock upgrade. We've tried to maintain 100% backwards compatibility with the existing system while also introducing new useful features. You can find detailed specifications for the contracts contained within this package here.

A style guide we follow for writing contracts can be found here.

Contracts Overview

Contracts deployed to L1

Name Proxy Type Description
L1CrossDomainMessenger ResolvedDelegateProxy High-level interface for sending messages to and receiving messages from Optimism
L1StandardBridge L1ChugSplashProxy Standardized system for transferring ERC20 tokens to/from Optimism
L2OutputOracle Proxy Stores commitments to the state of Optimism which can be used by contracts on L1 to access L2 state
OptimismPortal Proxy Low-level message passing interface
OptimismMintableERC20Factory Proxy Deploys standard OptimismMintableERC20 tokens that are compatible with either StandardBridge
ProxyAdmin - Contract that can upgrade L1 contracts

Contracts deployed to L2

Name Proxy Type Description
GasPriceOracle Proxy Stores L2 gas price configuration values
L1Block Proxy Stores L1 block context information (e.g., latest known L1 block hash)
L2CrossDomainMessenger Proxy High-level interface for sending messages to and receiving messages from L1
L2StandardBridge Proxy Standardized system for transferring ERC20 tokens to/from L1
L2ToL1MessagePasser Proxy Low-level message passing interface
SequencerFeeVault Proxy Vault for L2 transaction fees
OptimismMintableERC20Factory Proxy Deploys standard OptimismMintableERC20 tokens that are compatible with either StandardBridge
L2ProxyAdmin - Contract that can upgrade L2 contracts when sent a transaction from L1

Legacy and deprecated contracts

Name Location Proxy Type Description
AddressManager L1 - Legacy upgrade mechanism (unused in Bedrock)
DeployerWhitelist L2 Proxy Legacy contract for managing allowed deployers (unused since EVM Equivalence upgrade)
L1BlockNumber L2 Proxy Legacy contract for accessing latest known L1 block number, replaced by L1Block

Installation

We export contract ABIs, contract source code, and contract deployment information for this package via npm:

npm install @eth-optimism/contracts-bedrock

Contributing

For all information about working on and contributing to Optimism's smart contracts, please see CONTRIBUTING.md

Deployment

The smart contracts are deployed using foundry with a hardhat-deploy compatibility layer. When the contracts are deployed, they will write a temp file to disk that can then be formatted into a hardhat-deploy style artifact by calling another script.

The addresses in the deployments directory will be read into the script based on the backend's chain id. To manually define the set of addresses used in the script, set the CONTRACT_ADDRESSES_PATH env var to a path on the local filesystem that points to a JSON file full of key value pairs where the keys are names of contracts and the values are addresses. This works well with the JSON files in superchain-ops.

Configuration

Create or modify a file <network-name>.json inside of the deploy-config folder. By default, the network name will be selected automatically based on the chainid. Alternatively, the DEPLOYMENT_CONTEXT env var can be used to override the network name. The spec for the deploy config is defined by the deployConfigSpec located inside of the hardhat.config.ts.

Execution

Before deploying the contracts, you can verify the state diff produced by the deploy script using the runWithStateDiff() function signature which produces the outputs inside snapshots/state-diff/. Run the deployment with state diffs by executing: forge script -vvv scripts/Deploy.s.sol:Deploy --sig 'runWithStateDiff()' --rpc-url $ETH_RPC_URL --broadcast --private-key $PRIVATE_KEY.

  1. Set the env vars ETH_RPC_URL, PRIVATE_KEY and ETHERSCAN_API_KEY if contract verification is desired
  2. Deploy the contracts with forge script -vvv scripts/Deploy.s.sol:Deploy --rpc-url $ETH_RPC_URL --broadcast --private-key $PRIVATE_KEY Pass the --verify flag to verify the deployments automatically with Etherscan.
  3. Generate the hardhat deploy artifacts with forge script -vvv scripts/Deploy.s.sol:Deploy --sig 'sync()' --rpc-url $ETH_RPC_URL --broadcast --private-key $PRIVATE_KEY

Deploying a single contract

All of the functions for deploying a single contract are public meaning that the --sig argument to forge script can be used to target the deployment of a single contract.

Test Setup

The Solidity unit tests use the same codepaths to set up state that are used in production. The same L1 deploy script is used to deploy the L1 contracts for the in memory tests and the L2 state is set up using the same L2 genesis generation code that is used for production and then loaded into foundry via the vm.loadAllocs cheatcode. This helps to reduce the overhead of maintaining multiple ways to set up the state as well as give additional coverage to the "actual" way that the contracts are deployed.

The L1 contract addresses are held in deployments/hardhat/.deploy and the L2 test state is held in a .testdata directory. The L1 addresses are used to create the L2 state and it is possible for stale addresses to be pulled into the L2 state, causing tests to fail. Stale addresses may happen if the order of the L1 deployments happen differently since some contracts are deployed using CREATE. Run pnpm clean and rerun the tests if they are failing for an unknown reason.

Static Analysis

contracts-bedrock uses slither as its primary static analysis tool. When opening a pr that includes changes to contracts-bedrock, you should verify that slither did not detect any new issues by running pnpm slither:check.

If there are new issues, you should triage them. Run pnpm slither:triage to step through findings. You should carefully walk through these findings, specifying which to triage/ignore (default is to keep all, outputting them into slither-report.json). Findings can be triaged into slither.db.json or kept in the slither-report.json. You should triage issues with extreme care and security sign-off.

After issues are triaged, or an updated slither report is generated, make sure to check in your changes to git. Once checked in, the changes can be verified by running pnpm slither:check. This will fail if there are issues missing from the slither-report.json that are not triaged into slither.db.json.

contracts-bedrock's People

Contributors

mds1 avatar

Watchers

 avatar

Forkers

gallodasballo

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.