Git Product home page Git Product logo

saradelrio3's Introduction

MapReduce implementations of random oversampling, random undersampling and ‘‘Synthetic Minority Oversampling TEchnique’’ (SMOTE) algorithms using Hadoop

Random oversampling for big data: An approximation with MapReduce

The Random Oversampling (ROS) algorithm has been adapted to deal with big data following a MapReduce design where each Map process is responsible for adjusting the class distribution in a mapper’s partition through the random replication of minority class instances and the Reduce process is responsible for collecting the outputs generated by each mapper to form the balanced dataset. This process is illustrated in Figure 1 and consists of four steps: Initial, Map, Reduce and Final.

Figure 1: A flowchart of how the ROS MapReduce design works.

Random undersampling for big data: Selecting samples following a MapReduce procedure

The Random Undersampling (RUS) version adapted to deal with big data follows a MapReduce design where each Map process is responsible for grouping by classes all the instances in its data partition and the Reduce process is responsible for collecting the output by each mapper and equilibrating the class distribution through the random elimination of majority class instances to form the balanced dataset. This process is illustrated in Figure 2 and consists of four steps: Initial, Map, Reduce and Final.

Figure 2: A flowchart of how the RUS MapReduce design works.

SMOTE for big data: Adapting the generation of synthetic minority samples using MapReduce

The SMOTE algorithm has been adapted to deal with big data following a MapReduce design where each Map process oversamples the minority class and the Reduce process randomizes the output generated by each mapper to form the balanced dataset. This process is illustrated in Figure 3 and consists of four steps: Initial, Map, Reduce and Final.

Figure 3: A flowchart of how the SMOTE MapReduce design works.

References

S. Río, V. López, J.M. Benítez, F. Herrera. On the use of MapReduce for Imbalanced Big Data using Random Forest. Information Sciences 285 (2014) 112-137. doi: 10.1016/j.ins.2014.03.043 link to pdf file

saradelrio3's People

Contributors

lan666as2dfur avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.