Git Product home page Git Product logo

kimera-vio-ros's Introduction

Kimera-VIO-ROS

ROS Wrapper for Kimera.

Publications

We kindly ask to cite our paper if you find this library useful:

@InProceedings{Rosinol20icra-Kimera,
  title = {Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping},
  author = {Rosinol, Antoni and Abate, Marcus and Chang, Yun and Carlone, Luca},
  year = {2020},
  booktitle = {IEEE Intl. Conf. on Robotics and Automation (ICRA)},
  url = {https://github.com/MIT-SPARK/Kimera},
  pdf = {https://arxiv.org/pdf/1910.02490.pdf}
}

1. Installation

A. Prerequisities

sudo apt-get install ros-melodic-image-geometry ros-melodic-pcl-ros ros-melodic-cv-bridge
  • System dependencies: First, update package list: sudo apt-get update
sudo apt-get install -y --no-install-recommends apt-utils
sudo apt-get install -y \
      cmake build-essential unzip pkg-config autoconf \
      libboost-all-dev \
      libjpeg-dev libpng-dev libtiff-dev \
# Use libvtk5-dev, libgtk2.0-dev in ubuntu 16.04 \
      libvtk6-dev libgtk-3-dev \
      libatlas-base-dev gfortran \
      libparmetis-dev \
      python-wstool python-catkin-tools \

B. KimeraVIO ROS wrapper Installation

# Setup catkin workspace
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin init
catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release
# On Ubuntu 16.04:
# catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release -DGTSAM_USE_SYSTEM_EIGEN=ON
catkin config --merge-devel

# Add workspace to bashrc for automatic sourcing of workspace.
echo 'source ~/catkin_ws/devel/setup.bash' >> ~/.bashrc

# Clone repo
cd ~/catkin_ws/src
# For ssh:
git clone [email protected]:MIT-SPARK/Kimera-VIO-ROS.git
# For https:
# git clone https://github.com/MIT-SPARK/Kimera-VIO-ROS.git

# Install dependencies from rosinstall file using wstool
wstool init # Use unless wstool is already initialized

# For ssh:
wstool merge Kimera-VIO-ROS/install/kimera_vio_ros_ssh.rosinstall
# For https
# wstool merge Kimera-VIO-ROS/install/kimera_vio_ros_https.rosinstall

# Finally, download and update repos:
wstool update

Finally, compile:

# Compile code
catkin build

# Refresh workspace
source ~/catkin_ws/devel/setup.bash

2. Usage

Download a Euroc rosbag: for example V1_01_easy.

Online

  1. As a general good practice, open a new terminal and run: roscore

  2. In another terminal, launch KimeraVIO ROS wrapper:

roslaunch kimera_vio_ros kimera_vio_ros_euroc.launch
  1. In another terminal, launch rviz for visualization:
rviz -d $(rospack find kimera_vio_ros)/rviz/kimera_vio_euroc.rviz

Note: this rviz configuration makes use of a rviz plugin: mesh_rviz_plugins. To visualize the textured 3D mesh, clone this plugin to your catkin workspace and catkin build it (note that this should be done automatically via wstool).

  1. Finally, in another terminal, launch the downloaded Euroc rosbag:
rosbag play --clock /PATH/TO/EUROC_ROSBAG

Note that you will need to both source ROS and your catkin_ws for each new terminal unless you added the following lines to your ~/.bashrc file:

source /opt/ros/melodic/setup.bash  # Change `melodic` for your ROS distribution.
source ~/catkin_ws/devel/setup.bash # Change `bash` to the shell you use.

Offline

In this mode, the provided rosbag will be first parsed and then sent to the VIO for processing. This is particularly useful when debugging to avoid potential ROS networking issues.

  • To run, launch the KimeraVIO ROS wrapper with the online parameter set to false and specify the rosbag's path:
roslaunch kimera_vio_ros kimera_vio_ros_euroc.launch online:=false rosbag_path:="PATH/TO/ROSBAG"

Other datasets

The launch file and parameters can also be configured for other datasets. For example, here we provide a kitti rosbag for testing. To run, in one terminal, launch the Kimera ROS wrapper with the launch file we configured for kitti:

roslaunch kimera_vio_ros kimera_vio_ros_kitti.launch
  • In another terminal, launch a Kitti rosbag:
rosbag play --clock /PATH/TO/KITTI_ROSBAG
  • In rviz, you can use the provided config file provided at rviz/kimera_vio_kitti.rviz
rviz -d $(rospack find kimera_vio_ros)/rviz/kimera_vio_ros_kitti.rviz

Running Unit tests

To run unit tests using catkin for this specific package, call (after building the package and sourcing the workspace):

catkin run_tests --no-deps --this

Other functionalities

Using camera_info topics instead of Yaml parameters

It is sometimes convenient to use the camera_info topics to parse the camera's parameters. There are currently two ways of using these topics:

  • Offline: using the launch file launch/cam_info_yamlizer.launch which will generate yaml files out of the topics. You need to make sure that the frame_ids and the ROS topics are correctly set. Also, mind that the left/right cam frame ids are typically set as static tfs in a rosbag, therefore, first launch the node, and then run the rosbag (in case you see an exception bcs of a missing frame_id).
  • Online: setting the flag use_online_cam_params (see launch/kimera_vio_ros.launch) to true, and ensuring ROS topics are correctly set.

Restart Kimera-VIO

The typical use case is that you have multiple rosbags and you don't want to be killing Kimera-VIO(-ROS) each time. If this is your case, then we provide a rosservice to restart Kimera-VIO (it will do a hard restart, meaning the whole pipeline and data provider will be destructed and constructed again).

rosservice call /kimera_vio_ros/kimera_vio_ros_node/restart_kimera_vio

Note that Kimera-VIO will complain if timestamps are not strictly increasing. Therefore, one must follow these steps:

  1. Start Kimera-VIO and rosbag
  2. Stop rosbag
  3. Call rosservice to restart VIO
  4. Start another rosbag

Enable Dense Depth Stereo estimation

This will run OpenCV's StereoBM algorithm, more info can be found here (also checkout this to choose good parameters):

roslaunch kimera_vio_ros kimera_vio_ros_euroc run_stereo_dense:=1

This will publish a /stereo_gray/points2 topic, which you can visualize in Rviz as a 3D pointcloud. Alternatively, if you want to visualize the depth image, since Rviz does not provide a plugin to visualize a disparity image, we also run a disparity_image_proc nodelet that will publish the depth image to /stereo_gray/disparity_image_proc/depth/image_raw.

Hardware use

See the documentation on hardware setup for instructions on running KimeraROS on supported hardware platforms, as well as guides on how to develop for other platforms.

BSD License

KimeraVIO ROS wrapper is open source under the BSD license, see the LICENSE.BSD file.

kimera-vio-ros's People

Contributors

clungzta avatar gavanderhoorn avatar kopanevpavel avatar m-pilia avatar marcusabate avatar pantonante avatar sandro-berchier avatar sandroberchier avatar sisco0 avatar tonirv avatar violetteavi avatar yunzc avatar

Stargazers

 avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.