Git Product home page Git Product logo

konn / computational-algebra Goto Github PK

View Code? Open in Web Editor NEW
92.0 13.0 9.0 119.52 MB

General-Purpose Computer Algebra System as an EDSL in Haskell

Home Page: http://konn.github.io/computational-algebra/

License: BSD 3-Clause "New" or "Revised" License

Haskell 23.41% HTML 75.88% Emacs Lisp 0.02% Shell 0.03% Dockerfile 0.19% Dhall 0.47%
haskell math mathematics computational-algebra groebner-basis ideal polynomial algorithm

computational-algebra's Issues

Improve representation of monomials

Currently, monomials are represented as unboxed vectors of Ints. This seems rather inefficient: an unboxed vector stores an offset, a length, and the data is stored byte-per-byte instead of word-per-word.

Two ideas come to mind instead:

newtype Monomial ( n :: Nat ) = Monomial ( Array# Word )

or, avoiding all indirections entirely:

data family Monomial ( n :: Nat ) :: TYPE ( 'TupleRep ( Replicate n WordRep ) )
newtype instance Monomial 0 = M0 (# #)
newtype instance Monomial 1 = M1 (# Word# #)
newtype instance Monomial 2 = M2 (# Word#, Word# #)
newtype instance Monomial 3 = M3 (# Word#, Word#, Word# #)
newtype instance Monomial 4 = M4 (# Word#, Word#, Word#, Word# #)
...

I'm also wondering if a Map is the best data-structure to use to represent polynomials, but I suppose that's best left to a separate ticket.

Haddock failure

cabal haddock yields this error:

dist/build/tmp-21791/Algebra/Algorithms/ZeroDim.hs:319:46:
    parse error on input `-- ^ lex-Groebner basis of the kernel of the given linear map.'

because although Haddock lets you attach documentation to individual function parameters, it does not let you attach it to individual members of a tuple.

Solving quantified formulas (quantifier elimination)

It might be useful to extend the computational-algebra library to solve quantified formulas instead of quantifier-free formulas.

I found a Haskell library that eliminates quantifiers formulas using cylindrical algebraic decomposition: could this library be used to solve quantified formulas in computational-algebra?

Floating-point algorithms?

Apologies if I've missed something, but I couldn't figure out how to use solveM or solve' with floating point coefficients (e.g. Double). Is this possible?

In my situation, the algorithms using Fraction Integer seem much too slow. Something that takes less than a second in Mathematica or Macaulay2 doesn't even terminate after 15 minutes with solveM/solve'.

Here's an example of a system that I've been working with (I cleared the denominators manually, for simplicity)

p = -495 - 5625 * t + 27891 * t^2 - 33372 * t^3 + 13824 * t^4 - 2367 * t^5 + 6345 * u + 25110 * t * u - 170721 * t^2 * u + 230166 * t^3 * u - 110682 * t^4 * u + 15354 * t^5 * u - 18765 * u^2 + 22140 * t * u^2 + 148581 * t^2 * u^2 - 256878 * t^3 * u^2 + 148446 * t^4 * u^2 - 24300 * t^5 * u^2 + 25110 * u^3 - 100440 * t * u^3 + 56970 * t^2 * u^3 + 4860 * t^3 * u^3 - 29160 * t^4 * u^3 + 16740 * t^5 * u^3 - 12960 * u^4 + 51840 * t * u^4 - 27540 * t^2 * u^4 + 33750 * t^3 * u^4 - 21600 * t^4 * u^4 - 8370 * t^5 * u^4 - 3240 * t^2 * u^5 - 25920 * t^3 * u^5 + 25920 * t^4 * u^5

q1 = 52785 + 56943 * t - 4037688 * t^2 + 15883803 * t^3 - 26239221 * t^4 + 20703357 * t^5 - 7724700 * t^6 + 989361 * t^7 - 66015 * u + 487134 * t * u + 27385938 * t^2 * u - 113650722 * t^3 * u + 181819755 * t^4 * u - 135044982 * t^5 * u + 48046662 * t^6 * u - 6530274 * t^7 * u - 2478195 * u^2 + 6294834 * t * u^2 - 111627882 * t^2 * u^2 + 417376962 * t^3 * u^2 - 654613569 * t^4 * u^2 + 478520946 * t^5 * u^2 - 162633582 * t^6 * u^2 + 21861414 * t^7 * u^2 + 13768380 * u^3 - 50360616 * t * u^3 + 247545072 * t^2 * u^3 - 696128256 * t^3 * u^3 + 1052548344 * t^4 * u^3 - 789620400 * t^5 * u^3 + 272718252 * t^6 * u^3 - 36077400 * t^7 * u^3 - 28987470 * u^4 + 118189368 * t * u^4 - 321295572 * t^2 * u^4 + 526662486 * t^3 * u^4 - 679607010 * t^4 * u^4 + 541760724 * t^5 * u^4 - 204607620 * t^6 * u^4 + 26871750 * t^7 * u^4 + 27060480 * u^5 - 113821200 * t * u^5 + 244827360 * t^2 * u^5 - 186998220 * t^3 * u^5 + 124853400 * t^4 * u^5 - 150553080 * t^5 * u^5 + 83446200 * t^6 * u^5 - 9491580 * t^7 * u^5 - 9331200 * u^6 + 39074400 * t * u^6 - 91154160 * t^2 * u^6 + 40979520 * t^3 * u^6 - 5093280 * t^4 * u^6 + 57678480 * t^5 * u^6 - 44634240 * t^6 * u^6 + 3013200 * t^7 * u^6 + 233280 * t * u^7 + 3265920 * t^2 * u^7 + 14929920 * t^3 * u^7 - 22161600 * t^4 * u^7 - 3732480 * t^5 * u^7 + 9331200 * t^6 * u^7

q2 = 919350 - 1206090 * t - 18350955 * t^2 + 58802085 * t^3 - 67806099 * t^4 + 35782614 * t^5 - 8371728 * t^6 + 651591 * t^7 - 5576850 * u + 32915970 * t * u - 20491785 * t^2 * u - 89979930 * t^3 * u + 154823643 * t^4 * u - 98196624 * t^5 * u + 26236818 * t^6 * u - 2518830 * t^7 * u + 9173250 * u^2 - 91559970 * t * u^2 + 183517245 * t^2 * u^2 - 118728180 * t^3 * u^2 - 7137315 * t^4 * u^2 + 55358640 * t^5 * u^2 - 33001290 * t^6 * u^2 + 5753700 * t^7 * u^2 + 1069200 * u^3 + 54276480 * t * u^3 - 129054870 * t^2 * u^3 + 117919800 * t^3 * u^3 - 53146530 * t^4 * u^3 - 19948680 * t^5 * u^3 + 38889720 * t^6 * u^3 - 9797760 * t^7 * u^3 - 11372400 * u^4 + 12733200 * t * u^4 - 9379800 * t^2 * u^4 - 12830400 * t^3 * u^4 + 49223700 * t^4 * u^4 - 15870330 * t^5 * u^4 - 16692480 * t^6 * u^4 + 7690950 * t^7 * u^4 + 4665600 * u^5 - 4665600 * t * u^5 + 21724200 * t^2 * u^5 - 38296800 * t^3 * u^5 + 5297400 * t^4 * u^5 + 1628100 * t^5 * u^5 - 356400 * t^6 * u^5 - 2762100 * t^7 * u^5 - 583200 * t * u^6 - 11664000 * t^2 * u^6 + 23328000 * t^3 * u^6 - 4422600 * t^4 * u^6 + 6536700 * t^5 * u^6 - 2721600 * t^6 * u^6 + 753300 * t^7 * u^6 - 874800 * t^4 * u^7 - 4665600 * t^5 * u^7 + 2332800 * t^6 * u^7

These are polynomials in two variables t, u. Both Mathematica and Macaulay2 can solve the system {p, q1, q2} in less than a second, whereas neither solveM nor solve' can finish under 15 minutes.

In this case, I'm looking for the real solutions with t,u in the unit interval, which are:

  • t = 0.376357, u = 0.106547
  • t = 0.886678, u = 0.626615

polynomial_system

I also tried to use Fraction Int, but a lack of instances prevented that from working.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.