Git Product home page Git Product logo

rhcr's Introduction

RHCR

test_ubuntu test_macos

Rolling-Horizon Collision Resolution (RHCR) is an efficient algorithm for solving lifelong Multi-Agent Path Finding (MAPF) where we are aksed to plan collision-free paths for a large number of agents that are constanly engaged with new goal locations. RHCR calls a Windowed MAPF solver every h timesteps that resolves collisions only for the next w timesteps (w >= h). More details can be found in our extended abstract at AAMAS 2020 [1] and our full paper at AAAI 2021 [2].

The code requires the external library BOOST (https://www.boost.org/).
Here is an easy way of installing BOOST in Linux:

sudo apt install libboost-all-dev

After you installed BOOST and downloaded the source code, go into the directory of the source code and compile it with CMake:

cmake .
make

Then, you are able to run the code:

./lifelong -m maps/sorting_map.grid -k 800 --scenario=SORTING --simulation_window=5 --planning_window=10 --solver=PBS --seed=0

for running RHCR with PBS on the sorting center map; and

./lifelong -m maps/kiva.map -k 100 --scenario=KIVA --simulation_window=1 --solver=ECBS --suboptimal_bound=1.5 --dummy_path=1 --seed=0

for running ECBS(w=1.5) with dummy paths on the kiva map.

  • m: the map file
  • k: the number of agents
  • scenario: the simulation scenario (each scenario corresponding to a different task assigner). Use KIVA for the fulfillment warehouse scenario and SORTING for the sorting center scenario.
  • simulation_window: the replanning period h
  • planning_window: the planning window w
  • solver: the windowed MAPF solver (WHCA, ECBS, and PBS)
  • seed: the random seed

You can find more details and explanations for all parameters with:

./lifelong --help

License

RHCR is released under USC โ€“ Research License. See license.md for further details.

References

[1] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar and Sven Koenig. Lifelong Multi-Agent Path Finding in Large-Scale Warehouses (extended abstract). In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1898-1900, 2020.

[2] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar and Sven Koenig. Lifelong Multi-Agent Path Finding in Large-Scale Warehouses. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), (in print), 2021.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.