Git Product home page Git Product logo

rtkbase's Introduction

RTKBase

An easy to use and easy to install web frontend with some bash scripts and services for a simple headless gnss base station.

FrontEnd:

|status|settings|logs|

Frontend's features are:

  • View the satellites signal levels
  • View the base location on a map
  • Start/stop various services (Sending data to a Ntrip caster, Rtcm server, Log raw data to files)
  • Edit the services settings
  • Download/delete raw data

Base example:

status

  • Enclosure: GentleBOX JE-200 (waterproof, cable glands for antenna and ethernet cable)
  • SBC: Raspberry Pi 3 / Orange Pi Zero (512MB)
  • Gnss Receiver: U-Blox ZED-F9P (from Drotek)
  • Antenna: DA910 (Gps L1/L2, Glonass L1/L2, Beidou B1/B2/B3 and Galileo E1/E5b/E6) + sma (male) to TNC (male) outdoor cable.
  • Power: Trendnet TPE-113GI POE injector + Trendnet POE TPE-104GS Extractor/Splitter + DC Barrel to Micro Usb adapter

Other images are available in the ./images folder.

Ready to flash release:

If you use a Raspberry Pi, thanks to jancelin, you can download a ready to flash iso file here.

Easy installation:

  • Connect your gnss receiver to your raspberry pi/orange pi/....

  • Open a terminal and:

    $ cd ~
    $ wget https://raw.githubusercontent.com/stefal/rtkbase/master/tools/install.sh
    $ chmod +x install.sh
    $ sudo ./install.sh --all
  • Go grab a coffee, it's gonna take a while. The script will install the needed softwares, and if you use a Usb-connected U-Blox ZED-F9P receiver, it'll be detected and set to work as a base station. If you don't use a F9P, you will have to configure your receiver manually (see step 7 in manual installation), and choose the correct port from the settings page.

  • Open a web browser to http://ip_of_your_sbc (the script will try to show you this ip address). Default password is admin. The settings page allow you to enter your own settings for the base coordinates, ntrip credentials and so on...

    all settings

    If you don't already know your base precise coordinates, it's time to read one of theses tutorial:

Manual installation:

The install.sh script can be use without the --all option to split the installation process into several differents steps:

   $ ./install.sh --help
   ################################
   RTKBASE INSTALLATION HELP
   ################################
   Bash script to install a simple gnss base station with a web frontend.



   * Before install, connect your gnss receiver to raspberry pi/orange pi/.... with usb or uart.
   * Running install script with sudo

         sudo ./install.sh

   Options:
        --all
                         Install all dependencies, Rtklib, last release of Rtkbase, gpsd, chrony, services,
                         crontab jobs, detect your GNSS receiver and configure it.

        --dependencies
                         Install all dependencies like git build-essential python3-pip ...

        --rtklib
                         Clone RTKlib 2.4.3 from github and compile it.
                         https://github.com/tomojitakasu/RTKLIB/tree/rtklib_2.4.3

        --rtkbase-release
                         Get last release of RTKBASE:
                         https://github.com/Stefal/rtkbase/releases

        --rtkbase-repo
                         Clone RTKBASE from github:
                         https://github.com/Stefal/rtkbase/tree/web_gui

        --unit-files
                         Deploy services.

        --gpsd-chrony
                         Install gpsd and chrony to set date and time
                         from the gnss receiver.

        --detect-usb-gnss
                         Detect your GNSS receiver.

        --configure-gnss
                         Configure your GNSS receiver.

        --start-services
                         Start services (rtkbase_web, str2str_tcp, gpsd, chrony)

So, if you really want it, let's go for a manual installation with some explanations:

  1. Install dependencies with sudo ./install.sh --dependencies, or do it manually with:

    $ sudo apt update
    $ sudo apt install -y  git build-essential python3-pip python3-dev python3-setuptools python3-wheel libsystemd-dev bc dos2unix socat
  2. Install RTKLIB with sudo ./install.sh --rtklib, or:

    • clone RTKlib

      $ cd ~
      $ git clone -b rtklib_2.4.3 https://github.com/tomojitakasu/RTKLIB/rtklib_2.4.3
    • compile and install str2str:

      Optionnaly, you can edit the CTARGET line in makefile in RTKLIB/app/str2str/gcc

      $ cd RTKLIB/app/str2str/gcc
      $ nano makefile

      For an Orange Pi Zero SBC, i use:

      CTARGET = -mcpu=cortex-a7 -mfpu=neon-vfpv4 -funsafe-math-optimizations

      Then you can compile and install str2str:

      $ make
      $ sudo make install
    • Compile/install rtkrcv and convbin the same way as str2str.

  3. Get latest rtkbase release sudo ./install.sh --rtkbase-release, or:

    $ wget https://github.com/stefal/rtkbase/releases/latest/download/rtkbase.tar.gz -O rtkbase.tar.gz
    $ tar -xvf rtkbase.tar.gz
    

    If you prefer, you can clone this repository to get the latest code.

  4. Install the rtkbase requirements:

    $ python3 -m pip install --upgrade pip setuptools wheel  --extra-index-url https://www.piwheels.org/simple
    $ python3 -m pip install -r rtkbase/web_app/requirements.txt  --extra-index-url https://www.piwheels.org/simple
    $ python3 -m pip install rtkbase/tools/pystemd-0.8.1590398158-cp37-cp37m-linux_armv7l.whl
    
  5. Install the systemd services with sudo ./install.sh --unit-files, or do it manually with:

    • Edit them (rtkbase/unit/) to replace {user} with your username.
    • If you log the raw data inside the base station, you may want to compress these data and delete the too old archives. archive_and_clean.sh will do it for you. The default settings compress the previous day data and delete all archives older than 90 days. To automate these 2 tasks, enable the rtkbase_archive.timer. The default value runs the script everyday at 04H00.
    • Copy these services to /etc/systemd/system/ then enable the web server, str2str_tcp and rtkbase_archive.timer:
    $ sudo systemctl daemon-reload
    $ sudo systemctl enable rtkbase_web
    $ sudo systemctl enable str2str_tcp
    $ sudo systemctl enable rtkbase_archive.timer
  6. Install and configure chrony and gpsd with sudo ./install.sh --gpsd-chrony, or:

    • Install chrony with sudo apt install chrony then add this parameter in the chrony conf file (/etc/chrony/chrony.conf):

      refclock SHM 0 refid GPS precision 1e-1 offset 0.2 delay 0.2

      Edit the chrony unit file. You should set After=gpsd.service

    • Install a gpsd release >= 3.2 or it won't work with a F9P. Its conf file should contains:

       # Devices gpsd should collect to at boot time.
       # They need to be read/writeable, either by user gpsd or the group dialout.
       DEVICES="tcp://127.0.0.1:5015"
    
       # Other options you want to pass to gpsd
       GPSD_OPTIONS="-n -b"
    
    

    Edit the gpsd unit file. You should have someting like this in the "[Unit]" section:

       [Unit]
       Description=GPS (Global Positioning System) Daemon
       Requires=gpsd.socket
       BindsTo=str2str_tcp.service
       After=str2str_tcp.service
    
    • Reload the services and enable them:
       $ sudo systemctl daemon-reload
       $ sudo systemctl enable chrony
       $ sudo systemctl enable gpsd
  7. Connect your gnss receiver to raspberry pi/orange pi/.... with usb or uart, and check which com port it uses (ttyS1, ttyAMA0, something else...). If it's a U-Blox usb receiver, you can use sudo ./install.sh --detect-usb-gnss. Write down the result, you may need it later.

  8. If you didn't have already configure your gnss receiver you must set it to output raw data:

    If it's a U-Blox ZED-F9P (usb), you can use

    $ sudo ./install.sh -detect-usb-gnss --configure-gnss

    If it's a U-Blox ZED-F9P (uart), you can use this command (change the ttyS1 and 115200 value if needed)):

    $ rtkbase/tools/set_zed-f9p.sh /dev/ttyS1 115200 rtkbase/receiver_cfg/U-Blox_ZED-F9P_rtkbase.txt

    If you need to use a config tool from another computer (like U-center), you can use socat:

    $ sudo socat tcp-listen:128,reuseaddr /dev/ttyS1,b115200,raw,echo=0

    Change the ttyS1 and 115200 value if needed. Then you can use a network connection in U-center with the base station ip address and the port nĀ°128.

  9. Now you can start the services with sudo ./install.sh --start-services, or:

       $ sudo systemctl start rtkbase_web
       $ sudo systemctl start str2str_tcp
       $ sudo systemctl start gpsd
       $ sudo systemctl start chrony
       $ sudo systemctl start rtkbase_archive.timer

    Everything should be ready, now you can open a web browser to your base station ip address.

How it works:

RTKBase use several RTKLIB str2str instances started with run_cast.sh as systemd services. run_cast.sh gets its settings from settings.conf

  • str2str_tcp.service is the main instance. It is connected to the gnss receiver and broadcast the raw data on TCP for all the others services.
  • str2str_ntrip.service get the data from the main instance, convert the data to rtcm and stream them to a Ntrip caster.
  • str2str_rtcm_svr.service get the data from the main instance, convert the data to rtcm and stream them to clients
  • str2str_file.service get the data from the main instance, and log the data to files.

internal

The web gui is available when the rtkbase_web service is running.

Other usages:

A gnss receiver with a timepulse output is a very accurate stratum 0 clock thus, your gnss base station could act as a stratum 1 ntp peer for your local network and/or the ntp pool. There are a few steps to do this:

  • Connect the timepulse output + GND to some GPIO inputs on your SBC.

  • Configure this input as PPS in your operating system.

    • Raspberry Pi example:

      • Inside /boot/config.txt, add dtoverlay=pps-gpio,gpiopin=18 on a new line. '18' is the input used for timepulse.
      • Inside /etc/modules, add pps-gpio on a new line, if it is not already present.
    • Orange Pi Zero example, inside /boot/armbianEnv.txt:

      • Add pps-gpio to the overlays line.
      • One a new line, add param_pps_pin=PA19 <- change 'PA19' to your input.
  • Set gpsd and chrony to use PPS

    • gpsd: comment the DEVICE line in /etc/defaut/gpsd and uncomment #DEVICES="tcp:\\127.0.0.1:5015 \dev\pps0

    • chrony: inside /etc/chrony/chrony.conf uncomment the refclock pps line and add noselect to the 'refclock SHM 0`. You should have something like this:

       refclock SHM 0 refid GPS precision 1e-1 offset 0 delay 0.2 noselect
       refclock PPS /dev/pps0 refid PPS lock GPS
    
    • reboot your sbc and check the result of chronyc sources -v You should read something like this, notice the '*' before 'PPS':
       basegnss@orangepizero:~$ chronyc sources -v
       210 Number of sources = 6
       .-- Source mode  '^' = server, '=' = peer, '#' = local clock.
       / .- Source state '*' = current synced, '+' = combined , '-' = not combined,
       | /   '?' = unreachable, 'x' = time may be in error, '~' = time too variable.
       ||                                                 .- xxxx [ yyyy ] +/- zzzz
       ||      Reachability register (octal) -.           |  xxxx = adjusted offset,
       ||      Log2(Polling interval) --.      |          |  yyyy = measured offset,
       ||                                \     |          |  zzzz = estimated error.
       ||                                 |    |           \
       MS Name/IP address         Stratum Poll Reach LastRx Last sample
       ===============================================================================
       #? GPS                           0   4   377    17    +64ms[  +64ms] +/-  200ms
       #* PPS                           0   4   377    14   +363ns[ +506ns] +/- 1790ns
       ^- ntp0.dillydally.fr            2   6   177    16    -12ms[  -12ms] +/-   50ms
       ^? 2a01:e35:2fba:7c00::21        0   6     0     -     +0ns[   +0ns] +/-    0ns
       ^- 62-210-213-21.rev.poneyt>     2   6   177    17  -6488us[-6487us] +/-   67ms
       ^- kalimantan.ordimatic.net      3   6   177    16    -27ms[  -27ms] +/-   64ms
    
    

License:

RTKBase is licensed under AGPL 3 (see LICENSE file).

RTKBase uses some parts of others software:

RTKBase uses OpenStreetMap tiles, courtesy of Empreinte digitale.

rtkbase's People

Contributors

stefal avatar egorf avatar danilkramorov avatar gpsfan avatar jancelin avatar zmonteiro avatar hurdmanbegins avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    šŸ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. šŸ“ŠšŸ“ˆšŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ā¤ļø Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.