Git Product home page Git Product logo

completable-futures's Introduction

completable-futures

Build Status Test Coverage Maven Central License

completable-futures is a set of utility functions to simplify working with asynchronous code in Java8.

Usage

Using completable-futures requires Java 8 but has no additional dependencies. It is meant to be included as a library in other software. To import it with maven, add this to your pom:

<dependency>
    <groupId>com.spotify</groupId>
    <artifactId>completable-futures</artifactId>
    <version>0.3.1</version>
</dependency>

Features

Combining more than two things

The builtin CompletableFuture API includes future.thenCombine(otherFuture, function) but if you want to combine more than two things it gets trickier. The CompletableFutures class contains the following APIs to simplify this use-case:

allAsList

If you want to join a list of futures of uniform type, use allAsList. This returns a future which completes to a list of all values of its inputs:

List<CompletableFuture<String>> futures = asList(completedFuture("a"), completedFuture("b"));
CompletableFuture<List<String>> joined = CompletableFutures.allAsList(futures);

allAsMap

If you want to join a map of key and value-futures, each of uniform type, use allAsMap. This returns a future which completes to a map of all key values of its inputs:

  Map<String, CompletableFuture<String>> futures = new HashMap() {{
    put("key", completedFuture("value"));
  }};
  CompletableFuture<Map<String, String>> joined = CompletableFutures.allAsMap(futures);

successfulAsList

Works like allAsList, but futures that fail will not fail the joined future. Instead, the defaultValueMapper function will be called once for each failed future and value returned will be put in the resulting list on the place corresponding to the failed future. The default value returned by the function may be anything, such as null or Optional.empty().

List<CompletableFuture<String>> input = asList(
    completedFuture("a"),
    exceptionallyCompletedFuture(new RuntimeException("boom")));
CompletableFuture<List<String>> joined = CompletableFutures.successfulAsList(input, t -> "default");

joinList

joinList is a stream collector that combines multiple futures into a list. This is handy if you apply an asynchronous operation to a collection of entities:

collection.stream()
    .map(this::someAsyncFunction)
    .collect(CompletableFutures.joinList())
    .thenApply(this::consumeList)

joinMap

joinMap is a stream collector that applies an asynchronous operation to each element of the stream, and associates the result of that operation to a key derived from the original element. This is useful when you need to keep the association between the entity that triggered the asynchronous operation and the result of that operation:

collection.stream()
    .collect(joinMap(this::toKey, this::someAsyncFunc))
    .thenApply(this::consumeMap)

combine

If you want to combine more than two futures of different types, use the combine method:

CompletableFutures.combine(f1, f2, (a, b) -> a + b);
CompletableFutures.combine(f1, f2, f3, (a, b, c) -> a + b + c);
CompletableFutures.combine(f1, f2, f3, f4, (a, b, c, d) -> a + b + c + d);
CompletableFutures.combine(f1, f2, f3, f4, f5, (a, b, c, d, e) -> a + b + c + d + e);

combineFutures

If you want to combine multiple futures into another future, use combineFutures:

CompletableFutures.combineFutures(f1, f2, (a, b) -> completedFuture(a + b));
CompletableFutures.combineFutures(f1, f2, f3, (a, b, c) -> completedFuture(a + b + c));
CompletableFutures.combineFutures(f1, f2, f3, f4, (a, b, c, d) -> completedFuture(a + b + c + d));
CompletableFutures.combineFutures(f1, f2, f3, f4, f5, (a, b, c, d, e) -> completedFuture(a + b + c + d + e));

Combine an arbitrary number of futures

If you want to combine more than six futures of different types, use the other combine method. Since it supports vararg usage, the function is now the first argument. The CombinedFutures object that is input to the function can be used to extract values from the input functions.

This is effectively the same thing as calling join() on the input future, but it's safer because calling .get(f) on a future that is not part of the combine, you will get an IllegalArgumentException.

This prevents accidental misuse where you would join on a future that is either not complete, or might never complete at all.

CompletionStage<String> f1;
CompletionStage<String> f2;
CompletionStage<String> result = combine(combined -> combined.get(f1) + combined.get(f2), f1, f2);

If you want to do this in a combineFutures form, you can do that like this:

CompletionStage<String> f1;
CompletionStage<String> f2;
CompletionStage<String> result = dereference(combine(combined -> completedFuture(combined.get(f1) + combined.get(f2)), f1, f2));

Scheduling

Polling an external resource

If you are dealing with a long-running external task that only exposes a polling API, you can transform that into a future like so:

Supplier<Optional<T>> pollingTask = () -> Optional.ofNullable(resource.result());
Duration frequency = Duration.ofSeconds(2);
CompletableFuture<T> result = CompletableFutures.poll(pollingTask, frequency, executor);

Missing parts of the CompletableFuture API

The CompletableFutures class includes utility functions for operating on futures that is missing from the builtin API.

handleCompose

Like CompletableFuture.handle but lets you return a new CompletionStage instead of a direct value.

CompletionStage<String> composed = handleCompose(future, (value, throwable) -> completedFuture("hello"));

exceptionallyCompose

Like CompletableFuture.exceptionally but lets you return a new CompletionStage instead of a direct value.

CompletionStage<String> composed = CompletableFutures.exceptionallyCompose(future, throwable -> completedFuture("fallback"));

dereference

Unwrap a CompletionStage<CompletionStage<T>> to a plain CompletionStage<T>.

CompletionStage<CompletionStage<String>> wrapped = completedFuture(completedFuture("hello"));
CompletionStage<String> unwrapped = CompletableFutures.dereference(wrapped);

exceptionallyCompletedFuture

Creates a new future that is already exceptionally completed with the given exception.

return CompletableFutures.exceptionallyCompletedFuture(new RuntimeException("boom"));

License

Copyright 2016 Spotify AB. Licensed under the Apache License, Version 2.0.

Code of Conduct

This project adheres to the Open Code of Conduct. By participating, you are expected to honor this code.

Releases

See the instructions in spotify/foss-root

completable-futures's People

Contributors

ccarpita avatar dependabot[bot] avatar dflemstr avatar eshrubs avatar gastaldi avatar josealavez avatar mattnworb avatar mbruggmann avatar mmscibor avatar npiguet avatar pettermahlen avatar rschildmeijer avatar sashahe avatar spkrka avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.