Git Product home page Git Product logo

shared_dysregulation_in_hd_and_scz's Introduction

Shared patterns of glial transcriptional dysregulation link Huntington's disease and schizophrenia

Abstract

Huntington’s disease (HD) and juvenile-onset schizophrenia (SCZ) have long been regarded as distinct disorders. However, both manifest cell-intrinsic abnormalities in glial differentiation, with resultant astrocytic dysfunction and hypomyelination. To assess whether a common mechanism might underlie the similar glial pathology of these otherwise disparate conditions, we utilized comparative correlation network approaches to analyze RNA-seq data from human glial progenitor cells (hGPCs) produced from disease-derived pluripotent stem cells. We identified gene sets preserved between HD and SCZ hGPCs yet distinct from normal controls, that included 174 highly-connected genes in the shared disease-associated network, focused on genes involved in synaptic signaling. These synaptic genes were largely suppressed in both SCZ and HD hGPCs, and gene regulatory network analysis identified a core set of upstream regulators of this network, of which OLIG2 and TCF7L2 were prominent. Among their downstream targets, ADGRL3, a modulator of glutamatergic synapses, was notably suppressed in both SCZ and HD hGPCs. ChIP-seq confirmed that OLIG2 and TCF7L2 each bound to the regulatory region of ADGRL3, whose expression was then rescued by lentiviral overexpression of these transcription factors. These data suggest that the disease-associated suppression of OLIG2 and TCF7L2-dependent transcription of glutamate signaling regulators may impair glial receptivity to neuronal glutamate. The consequent loss of activity-dependent mobilization of hGPCs may yield deficient oligodendrocyte production, and hence the hypomyelination noted in these disorders, as well as the disrupted astrocytic differentiation and attendant synaptic dysfunction associated with each. Together, these data highlight the importance of convergent glial molecular pathology in both the pathogenesis and phenotypic similarities of two otherwise unrelated disorders, HD and SCZ.

Scripts

Analyses in this manuscript were performed following these steps:
Step 1 : Processing of individual networks
Step 2 : Network preservation
Step 3 : Module prioritization of individual networks
Step 4 : Identification of prioritized cluster
Step 5 : Downstream targets of OLIG2 and TCF7L2

Raw data accession

Bulk RNA sequencing data: GSE105041, GSE86906, GSE188558
ChIP sequencing data: GSE188559, GSE65119, GSE31477

shared_dysregulation_in_hd_and_scz's People

Contributors

huynhnpt avatar

Watchers

 avatar

Forkers

ctngoldmanlab

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.