Git Product home page Git Product logo

weighted-levenshtein's Introduction

weighted-levenshtein

https://circleci.com/gh/infoscout/weighted-levenshtein.svg?style=svg

Use Cases

Most existing Levenshtein libraries are not very flexible: all edit operations have cost 1.

However, sometimes not all edits are created equal. For instance, if you are doing OCR correction, maybe substituting '0' for 'O' should have a smaller cost than substituting 'X' for 'O'. If you are doing human typo correction, maybe substituting 'X' for 'Z' should have a smaller cost, since they are located next to each other on a QWERTY keyboard.

This library supports all theses use cases, by allowing the user to specify different weights for edit operations involving every possible combination of letters. The core algorithms are written in Cython, which means they are blazing fast to run.

The Levenshtein distance function supports setting different costs for inserting characters, deleting characters, and substituting characters. Thus, Levenshtein distance is well suited for detecting OCR errors.

The Damerau-Levenshtein distance function supports setting different costs for inserting characters, deleting characters, substituting characters, and transposing characters. Thus, Damerau-Levenshtein distance is well suited for detecting human typos, since humans are likely to make transposition errors, while OCR is not.

More Information

Levenshtein distance: https://en.wikipedia.org/wiki/Levenshtein_distance and https://en.wikipedia.org/wiki/Wagner%E2%80%93Fischer_algorithm

Optimal String Alignment: https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Optimal_string_alignment_distance

Damerau-Levenshtein distance: https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Distance_with_adjacent_transpositions

Installation

pip install weighted-levenshtein

Usage Example

import numpy as np
from weighted_levenshtein import lev, osa, dam_lev


insert_costs = np.ones(128, dtype=np.float64)  # make an array of all 1's of size 128, the number of ASCII characters
insert_costs[ord('D')] = 1.5  # make inserting the character 'D' have cost 1.5 (instead of 1)

# you can just specify the insertion costs
# delete_costs and substitute_costs default to 1 for all characters if unspecified
print(lev('BANANAS', 'BANDANAS', insert_costs=insert_costs))  # prints '1.5'

delete_costs = np.ones(128, dtype=np.float64)
delete_costs[ord('S')] = 0.5  # make deleting the character 'S' have cost 0.5 (instead of 1)

# or you can specify both insertion and deletion costs (though in this case insertion costs don't matter)
print(lev('BANANAS', 'BANANA', insert_costs=insert_costs, delete_costs=delete_costs))  # prints '0.5'


substitute_costs = np.ones((128, 128), dtype=np.float64)  # make a 2D array of 1's
substitute_costs[ord('H'), ord('B')] = 1.25  # make substituting 'H' for 'B' cost 1.25

print(lev('HANANA', 'BANANA', substitute_costs=substitute_costs))  # prints '1.25'

# it's not symmetrical! in this case, it is substituting 'B' for 'H'
print(lev('BANANA', 'HANANA', substitute_costs=substitute_costs))  # prints '1'

# to make it symmetrical, you need to set both costs in the 2D array
substitute_costs[ord('B'), ord('H')] = 1.25  # make substituting 'B' for 'H' cost 1.25 as well

print(lev('BANANA', 'HANANA', substitute_costs=substitute_costs))  # now it prints '1.25'


transpose_costs = np.ones((128, 128), dtype=np.float64)
transpose_costs[ord('A'), ord('B')] = 0.75  # make swapping 'A' for 'B' cost 0.75

# note: now using dam_lev. lev does not support swapping, but osa and dam_lev do.
# See Wikipedia links for difference between osa and dam_lev
print(dam_lev('ABNANA', 'BANANA', transpose_costs=transpose_costs))  # prints '0.75'

# like substitution, transposition is not symmetrical either!
print(dam_lev('BANANA', 'ABNANA', transpose_costs=transpose_costs))  # prints '1'

# you need to explicitly set the other direction as well
transpose_costs[ord('B'), ord('A')] = 0.75  # make swapping 'B' for 'A' cost 0.75

print(dam_lev('BANANA', 'ABNANA', transpose_costs=transpose_costs))  # now it prints '0.75'

lev, osa, and dam_lev are aliases for levenshtein, optimal_string_alignment, and damerau_levenshtein, respectively.

Detailed Documentation

http://weighted-levenshtein.readthedocs.io/

Important Notes

  • All string lookups are case sensitive.
  • The costs parameters only accept numpy arrays, since the underlying Cython implementation relies on this for fast lookups. The numpy arrays are indexed using the ord() value of the characters. Thus, only the first 128 ASCII letters are accepted, and dict and list are not accepted. Consequently, the strings must be strictly str objects, not unicode.
  • This library is compatible with both Python 2 and Python 3 (tested on versions 2.7 and 3.6).

Use as Cython library

from weighted_levenshtein.clev cimport c_levenshtein as lev, c_optimal_string_alignment as osa, c_damerau_levenshtein as dam_lev
import numpy as np

a = np.ones(128, dtype=np.float64)
b = np.ones((128, 128), dtype=np.float64)

print(lev("BANANA", 4, "BANANAS", 5, a, a, b))

For the Cython API, functions are prefixed with a c_ with respect to the Python API. Also, the string parameters are followed by their length. The data types of the numpy arrays specifying the costs still need to be np.float64, consistent with the Python API.

Function signatures below:

cdef double c_damerau_levenshtein(
    unsigned char* str_a,
    Py_ssize_t len_a,
    unsigned char* str_b,
    Py_ssize_t len_b,
    double[::1] insert_costs,
    double[::1] delete_costs,
    double[:,::1] substitute_costs,
    double[:,::1] transpose_costs) nogil


cdef double c_optimal_string_alignment(
    unsigned char* word_m,
    Py_ssize_t m,
    unsigned char* word_n,
    Py_ssize_t n,
    double[::1] insert_costs,
    double[::1] delete_costs,
    double[:,::1] substitute_costs,
    double[:,::1] transpose_costs) nogil


cdef double c_levenshtein(
    unsigned char* word_m,
    Py_ssize_t m,
    unsigned char* word_n,
    Py_ssize_t n,
    double[::1] insert_costs,
    double[::1] delete_costs,
    double[:,::1] substitute_costs) nogil

weighted-levenshtein's People

Contributors

davidsu-infoscout avatar ddoddgh avatar duxan avatar infoscoutcorp avatar revolutiontech avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.