Git Product home page Git Product logo

java-buildpack-memory-calculator's Introduction

Java Buildpack Memory Calculator

The Java buildpack memory calculator determines values for JVM memory options with the goal of enabling an application to perform well while not exceeding the total memory available in a container (which results in the application being killed).

The buildpack provides the following inputs to the memory calculator:

  • the total memory available to the application,
  • an estimate of the number of threads that will be used by the application,
  • an estimate of the number of classes that will be loaded,
  • the type of JVM pool used in the calculation ('permgen' for Java 7 and 'metaspace' for Java 8 and later),
  • any JVM options specified by the user.

The memory calculator prints the JVM memory option settings described below, excluding any the user has specified, which are assumed to be correct.

For Java 8 and later, the memory calculator sets the maximum metaspace size (-XX:MaxMetaspaceSize) and compressed class space size (-XX:CompressedClassSpaceSize) based on the number of classes that will be loaded and sets the reserved code cache size (-XX:ReservedCodeCacheSize) to 240 Mb.

For Java 7, it sets the maximum permanent generation size (-XX:MaxPermSize) based on the number of classes that will be loaded and sets the reserved code cache size (-XX:ReservedCodeCacheSize) to 48 Mb.

It sets the maximum direct memory size (-XX:MaxDirectMemorySize) to 10 Mb.

It sets the stack size (-Xss) to a default value (unless the user has specified the stack size) and then calculates the amount of memory that will be consumed by the application's thread stacks.

Finally, it sets the heap size (-Xmx) to total memory minus the above values.

If the values need to be adjusted, the user can either increase the total memory available or set one or more JVM memory options to suitable values. Unless the user specifies the heap size (-Xmx), increasing the total memory available results in the heap size setting increasing by the additional total memory. Similarly, changing the value of other options affects the heap size. For example, if the user increases the maximum direct memory size from its default value of 10 Mb to 20 Mb, then this will reduce the calculated heap size by 10 Mb.

If the estimated number of threads or loaded classes needs to be modified, this can be achieved by configuring the buildpack. For example, when the OpenJDK JRE is used, the number of threads can be modified as in the following example:

$ cf set-env my-application JBP_CONFIG_OPEN_JDK_JRE '{ memory_calculator: { stack_threads: 200 } }'

and the number of loaded classes can be modified as in the following example:

$ cf set-env my-application JBP_CONFIG_OPEN_JDK_JRE '{ memory_calculator: { class_count: 1000 } }'

Please consult the Java Buildpack documentation for up to date configuration information.

The document Java Buildpack Memory Calculator v3 provides some rationale for the memory calculator externals.

Getting started

Install Go and then get the memory calculator (in the Go source tree).

We run our tests with Ginkgo/Gomega and manage dependencies with Godep. Ginkgo is one of the dependencies we manage, so get Godep before starting work:

go get -v github.com/cloudfoundry/java-buildpack-memory-calculator
cd src/github.com/cloudfoundry/java-buildpack-memory-calculator

go get -v github.com/tools/godep

(The -v options on go get are there so you can see what packages are compiled under the covers.)

The (bash) script ci/test.sh uses (the correct version of) Ginkgo to run the tests (using the correct versions of the dependencies). test.sh will recompile Ginkgo if necessary.

The parameters to runTests are passed directly to Ginkgo. For example:

ci/test.sh -r=false memory

will run the tests in the memory subdirectory without recursion into lower subdirectories (which is the default).

The current Go environment is not modified by test.sh.

Development

To develop against the code, you should issue:

godep restore

in the project directory before building or running tests directly from the command line.

If you wish to develop against a particular tagged version then, in the project directory, you need to checkout this version (using git checkout <tag>) and re-issue godep restore before proceeding.

If godep restore fails, it is because one of the dependencies cannot be obtained, or else it cannot be (re)set to the version this project depends on. Normally go get -u <project> for the dependency in error will then allow godep restore to complete normally.

Release binaries

The executables are built for more than one platform, so the Go compiler must exist for the target platforms we need (currently linux and darwin). The shell script (ci/build.sh) will use the Go compiler with the GOOS environment variable to generate the executables.

This will not work if the Go installation doesn't support all these platforms, so you may have to ensure Go is installed with cross-compiler support.

License

The Java Buildpack Memory Calculator is Open Source software released under the Apache 2.0 license.

Contributing

Please refer to the Contributors' Guide.

Community

Others involved in Java buildpack memory calculator development use the #java-buildpack channel of the Cloud Foundry slack organisation for discussion.

java-buildpack-memory-calculator's People

Contributors

glyn avatar nebhale avatar timgerlach avatar youngm avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.