Git Product home page Git Product logo

qiskit-ignis's Introduction

Qiskit Ignis

LicenseBuild Status

Qiskit is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms.

Qiskit is made up of elements that each work together to enable quantum computing. This element is Ignis, which provides tools for quantum hardware verification, noise characterization, and error correction.

Installation

We encourage installing Qiskit via the PIP tool (a python package manager), which installs all Qiskit elements, including this one.

pip install qiskit

PIP will handle all dependencies automatically for us and you will always install the latest (and well-tested) version.

To install from source, follow the instructions in the contribution guidelines.

Creating your first quantum experiment with Qiskit Ignis

Now that you have Qiskit Ignis installed, you can start creating experiments, to reveal information about the device quality. Here is a basic example:

$ python
# Import Qiskit classes
import qiskit
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit.providers.aer import noise # import AER noise model

# Measurement error mitigation functions
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                 CompleteMeasFitter, 
                                                 MeasurementFilter)

# Generate a noise model for the qubits
noise_model = noise.NoiseModel()
for qi in range(5):
    read_err = noise.errors.readout_error.ReadoutError([[0.75, 0.25],[0.1, 0.9]])
    noise_model.add_readout_error(read_err, [qi])

# Generate the measurement calibration circuits
# for running measurement error mitigation
qr = QuantumRegister(5)
meas_cals, state_labels = complete_meas_cal(qubit_list=[2,3,4], qr=qr)

# Execute the calibration circuits
backend = qiskit.Aer.get_backend('qasm_simulator')
job = qiskit.execute(meas_cals, backend=backend, shots=1000, noise_model=noise_model)
cal_results = job.result()

# Make a calibration matrix
meas_fitter = CompleteMeasFitter(cal_results, state_labels)

# Make a 3Q GHZ state
cr = ClassicalRegister(3)
ghz = QuantumCircuit(qr, cr)
ghz.h(qr[2])
ghz.cx(qr[2], qr[3])
ghz.cx(qr[3], qr[4])
ghz.measure(qr[2],cr[0])
ghz.measure(qr[3],cr[1])
ghz.measure(qr[4],cr[2])

# Execute the GHZ circuit (with the same noise model)
job = qiskit.execute(ghz, backend=backend, shots=1000, noise_model=noise_model)
results = job.result()

# Results without mitigation
raw_counts = results.get_counts()
print("Results without mitigation:", raw_counts)

# Create a measurement filter from the calibration matrix
meas_filter = meas_fitter.filter
# Apply the filter to the raw counts to mitigate 
# the measurement errors
mitigated_counts = meas_filter.apply(raw_counts)
print("Results with mitigation:", {l:int(mitigated_counts[l]) for l in mitigated_counts})
Results without mitigation: {'000': 181, '001': 83, '010': 59, '011': 65, '100': 101, '101': 48, '110': 72, '111': 391}

Results with mitigation: {'000': 421, '001': 2, '011': 1, '100': 53, '110': 13, '111': 510}

Contribution guidelines

Contribution Guidelines

If you'd like to contribute to Qiskit Ignis, please take a look at our contribution guidelines. This project adheres to Qiskit's code of conduct. By participating, you are expect to uphold to this code.

We use GitHub issues for tracking requests and bugs. Please use our slack for discussion and simple questions. To join our Slack community use the link. For questions that are more suited for a forum we use the Qiskit tag in the Stack Exchange.

Next Steps

Now you're set up and ready to check out some of the other examples from our Qiskit Tutorials repository.

Authors and Citation

Qiskit Ignis is the work of many people who contribute to the project at different levels. If you use Qiskit, please cite as per the included BibTeX file.

License

Apache License 2.0

qiskit-ignis's People

Contributors

dcmckayibm avatar yaelbh avatar mtreinish avatar shellygarion avatar chriseclectic avatar jaygambetta avatar gadial avatar eggerdj avatar quantumjim avatar nonhermitian avatar kiszk avatar eliarbel avatar drewrisinger avatar imaihal avatar rmlarose avatar samferracin avatar hushaohan avatar hodgestar avatar dennis-liu-1 avatar lerongil avatar nkanazawa1989 avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.