Git Product home page Git Product logo

dandelion's Introduction

Dandelion

PyPI version License: MPL 2.0 Python 3.x Travis CI

A quite light weight deep learning framework, on top of Theano, offering better balance between flexibility and abstraction

Targeted Users

Researchers who need flexibility as well as convenience to experiment all kinds of nonstandard network structures, and also the stability of Theano.

Featuring

  • Aiming to offer better balance between flexibility and abstraction.
    • Easy to use and extend, support for any neural network structure.
    • Loose coupling, each part of the framework can be modified independently.
  • More like a handy library of deep learning modules.
    • Common modules such as CNN, LSTM, GRU, Dense, Dropout, Batch Normalization, and common optimization methods such as SGD, Adam, Adadelta, Rmsprop are ready out-of-the-box.
  • Plug & play, operating directly on Theano tensors, no upper abstraction applied.
    • Unlike previous frameworks like Keras, Lasagne, etc., Dandelion operates directly on tensors instead of layer abstractions, making it quite easy to plug in 3rd part defined deep learning modules (layer defined by Keras/Lasagne) or vice versa.

Documentation

Documentation is available online: https://david-leon.github.io/Dandelion/

Install

Use pip channel for stable release

pip install dandelion --upgrade

or install from source to get the up-to-date version:

pip install git+https://github.com/david-leon/Dandelion.git

Dependency

  • Theano >=1.0
  • Scipy (required by dandelion.ext.CV)
  • Pillow (required by dandelion.ext.CV)
  • OpenCV (required by dandelion.ext.CV)

Quick Tour

    import theano
    import theano.tensor as tensor
    from dandelion.module import *
    from dandelion.update import *
    from dandelion.functional import *
    from dandelion.util import gpickle

    class model(Module):
        def __init__(self, batchsize=None, input_length=None, Nclass=6, noise=(0.5, 0.2, 0.7, 0.7, 0.7)):
            super().__init__()
            self.batchsize = batchsize
            self.input_length = input_length
            self.Nclass = Nclass
            self.noise = noise

            self.dropout0 = Dropout()
            self.dropout1 = Dropout()
            self.dropout2 = Dropout()
            self.dropout3 = Dropout()
            self.dropout4 = Dropout() 
            W = gpickle.load('word_embedding(6336, 256).gpkl')
            self.embedding = Embedding(num_embeddings=6336, embedding_dim=256, W=W)
            self.lstm0 = LSTM(input_dims=256, hidden_dim=100)
            self.lstm1 = LSTM(input_dims=256, hidden_dim=100)
            self.lstm2 = LSTM(input_dims=200, hidden_dim=100)
            self.lstm3 = LSTM(input_dims=200, hidden_dim=100)
            self.lstm4 = LSTM(input_dims=200, hidden_dim=100)
            self.lstm5 = LSTM(input_dims=200, hidden_dim=100)
            self.dense = Dense(input_dims=200, output_dim=Nclass)
       
        def forward(self, x):
            self.work_mode = 'train'
            x = self.dropout0.forward(x, p=self.noise[0], rescale=False)
            x = self.embedding.forward(x)         # (B, T, D)

            x = self.dropout1.forward(x, p=self.noise[1], rescale=True)
            x = x.dimshuffle((1, 0, 2))           # (B, T, D) -> (T, B, D)
            x_f = self.lstm0.forward(x, None, None, None)
            x_b = self.lstm1.forward(x, None, None, None, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=2)

            x = pool_1d(x, ws=2, ignore_border=True, mode='average_exc_pad', axis=0)

            x = self.dropout2.forward(x, p=self.noise[2], rescale=True)
            x_f = self.lstm2.forward(x, None, None, None)
            x_b = self.lstm3.forward(x, None, None, None, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=2)

            x = self.dropout3.forward(x, p=self.noise[3], rescale=True)
            x_f = self.lstm4.forward(x, None, None, None, only_return_final=True)
            x_b = self.lstm5.forward(x, None, None, None, only_return_final=True, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=1)

            x = self.dropout4.forward(x, p=self.noise[4], rescale=True)
            y = sigmoid(self.dense.forward(x))
            return y

        def predict(self, x):
            self.work_mode = 'inference'
            x = self.embedding.predict(x)

            x = x.dimshuffle((1, 0, 2))  # (B, T, D) -> (T, B, D)
            x_f = self.lstm0.predict(x, None, None, None)
            x_b = self.lstm1.predict(x, None, None, None, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=2)

            x = pool_1d(x, ws=2, ignore_border=True, mode='average_exc_pad', axis=0)

            x_f = self.lstm2.predict(x, None, None, None)
            x_b = self.lstm3.predict(x, None, None, None, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=2)

            x_f = self.lstm4.predict(x, None, None, None, only_return_final=True)
            x_b = self.lstm5.predict(x, None, None, None, only_return_final=True, backward=True)
            x = tensor.concatenate([x_f, x_b], axis=1)

            y = sigmoid(self.dense.predict(x))
            return y            

Why Another DL Framework

  • The reason is more about the lack of flexibility for existing DL frameworks, such as Keras, Lasagne, Blocks, etc.
  • By “flexibility”, we means whether it is easy to modify or extend the framework.
    • The famous DL framework Keras is designed to be beginner-friendly oriented, at the cost of being quite hard to modify.
    • Compared to Keras, another less-famous framework Lasagne provides more flexibility. It’s easier to write your own layer by Lasagne for small neural network, however, for complex neural networks it still needs quite manual works because like other existing frameworks, Lasagne operates on abstracted ‘Layer’ class instead of raw tensor variables.

Project Layout

Python Module Explanation
module all neual network module definitions
functional operations on tensor with no parameter to be learned
initialization initialization methods for neural network modules
activation definition of all activation functions
objective definition of all loss objectives
update definition of all optimizers
util utility functions
model model implementations out-of-the-box
ext extensions

Credits

The design of Dandelion heavily draws on Lasagne and Pytorch, both my favorate DL libraries.
Special thanks to Radomir Dopieralski, who transferred the dandelion project name on pypi to us. Now you can install the package by simply pip install dandelion.

dandelion's People

Contributors

david-leon avatar q-qiu avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

Forkers

alsm168 10183308

dandelion's Issues

How to implement CTC

How to implement CTC for all of your NET for speech recognition?
I am trying to imagine but you do not give examples so it is very hard to understand.
Thanks for your distribute
[email protected]

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.