Git Product home page Git Product logo

karmada's Introduction

Karmada

Karmada-logo

build Go Report Card LICENSE Releases Slack

Karmada: Open, Multi-Cloud, Multi-Cluster Kubernetes Orchestration

Karmada (Kubernetes Armada) is a Kubernetes management system that enables you to run your cloud-native applications across multiple Kubernetes clusters and clouds, with no changes to your applications. By speaking Kubernetes-native APIs and providing advanced scheduling capabilities, Karmada enables truly open, multi-cloud Kubernetes.

Karmada aims to provide turnkey automation for multi-cluster application management in multi-cloud and hybrid cloud scenarios, with key features such as centralized multi-cloud management, high availability, failure recovery, and traffic scheduling.

Why Karmada:

  • K8s Native API Compatible

    • Zero change upgrade, from single-cluster to multi-cluster
    • Seamless integration of existing K8s tool chain
  • Out of the Box

    • Built-in policy sets for scenarios, including: Active-active, Remote DR, Geo Redundant, etc.
    • Cross-cluster applications auto-scaling, failover and load-balancing on multi-cluster.
  • Avoid Vendor Lock-in

    • Integration with mainstream cloud providers
    • Automatic allocation, migration across clusters
    • Not tied to proprietary vendor orchestration
  • Centralized Management

    • Location agnostic cluster management
    • Support clusters in Public cloud, on-prem or edge
  • Fruitful Multi-Cluster Scheduling Policies

    • Cluster Affinity, Multi Cluster Splitting/Rebalancing,
    • Multi-Dimension HA: Region/AZ/Cluster/Provider
  • Open and Neutral

    • Jointly initiated by Internet, finance, manufacturing, teleco, cloud providers, etc.
    • Target for open governance with CNCF

Notice: this project is developed in continuation of Kubernetes Federation v1 and v2. Some basic concepts are inherited from these two versions.

Architecture

Architecture

The Karmada Control Plane consists of the following components:

  • Karmada API Server
  • Karmada Controller Manager
  • Karmada Scheduler

ETCD stores the karmada API objects, the API Server is the REST endpoint all other components talk to, and the Karmada Controller Manager perform operations based on the API objects you create through the API server.

The Karmada Controller Manager runs the various controllers, the controllers watch karmada objects and then talk to the underlying clusters’ API servers to create regular Kubernetes resources.

  1. Cluster Controller: attach kubernetes clusters to Karmada for managing the lifecycle of the clusters by creating cluster object.

  2. Policy Controller: the controller watches PropagationPolicy objects. When PropagationPolicy object is added, it selects a group of resources matching the resourceSelector and create ResourceBinding with each single resource object.

  3. Binding Controller: the controller watches ResourceBinding object and create Work object corresponding to each cluster with single resource manifest.

  4. Execution Controller: the controller watches Work objects.When Work objects are created, it will distribute the resources to member clusters.

Concepts

Resource template: Karmada uses Kubernetes Native API definition for federated resource template, to make it easy to integrate with existing tools that already adopt on Kubernetes

Propagation Policy: Karmada offers standalone Propagation(placement) Policy API to define multi-cluster scheduling and spreading requirements.

  • Support 1:n mapping of Policy: workload, users don't need to indicate scheduling constraints every time creating federated applications.
  • With default policies, users can just interact with K8s API

Override Policy: Karmada provides standalone Override Policy API for specializing cluster relevant configuration automation. E.g.:

  • Override image prefix according to member cluster region
  • Override StorageClass according to cloud provider

The following diagram shows how Karmada resources are involved when propagating resources to member clusters.

karmada-resource-relation

Quick Start

This guide will cover:

  • Install karmada control plane components in a Kubernetes cluster which as known as host cluster.
  • Join a member cluster to karmada control plane.
  • Propagate an application by karmada.

Demo

There are several demonstrations of common cases.

Demo

Prerequisites

Install karmada control plane

1. Clone this repo to your machine:

# git clone https://github.com/karmada-io/karmada

2. Change to karmada directory:

# cd karmada

3. Deploy and run karmada control plane:

Choose a way:

3.1. I have not any cluster

run the following script: (It will create a host cluster by kind)

# hack/local-up-karmada.sh

The script hack/local-up-karmada.sh will do following tasks for you:

  • Start a Kubernetes cluster to run the karmada control plane, aka. the host cluster.
  • Build karmada control plane components based on a current codebase.
  • Deploy karmada control plane components on host cluster.

If everything goes well, at the end of the script output, you will see similar messages as follows:

Local Karmada is running.

Kubeconfig for karmada is in file: /root/.kube/karmada.config, so you can run:
  export KUBECONFIG="/root/.kube/karmada.config"
Or use kubectl with --kubeconfig=/root/.kube/karmada.config
Please use 'kubectl config use-context <Context_Name>' to switch clusters.
The following is context intro:
  ------------------------------------------------------
  |    Context Name   |          Purpose               |
  |----------------------------------------------------|
  | karmada-host      | the cluster karmada install in |
  |----------------------------------------------------|
  | karmada-apiserver | karmada control plane          |
  ------------------------------------------------------

There are two contexts:

  • karmada-apiserver kubectl config use-context karmada-apiserver
  • karmada-host kubectl config use-context karmada-host

The karmada-apiserver is the main kubeconfig to be used when interacting with karamda control plane, while karmada-host is only used for debugging karmada installation with the host cluster. You can check all clusters at any time by running: kubectl config view. To switch cluster contexts, run kubectl config use-context [CONTEXT_NAME]

3.2. I have present cluster for installing

Before running the following script, please make sure your cluster could provide the LoadBalancer type service. Otherwise, type export CLUSTER_IP_ONLY=true with the ClusterIP type service before the following script.

# hack/remote-up-karmada.sh <kubeconfig> <context_name>

kubeconfig is your cluster's kubeconfig that you want to install to

context_name is the name of context in 'kubeconfig'

If everything goes well, at the end of the script output, you will see similar messages as follows:

Karmada is installed.

Kubeconfig for karmada in file: /root/.kube/karmada.config, so you can run:
  export KUBECONFIG="/root/.kube/karmada.config"
Or use kubectl with --kubeconfig=/root/.kube/karmada.config
Please use 'kubectl config use-context karmada-apiserver' to switch the cluster of karmada control plane
And use 'kubectl config use-context your-host' for debugging karmada installation

Tips

  • Please make sure you can access google cloud registry: k8s.gcr.io
  • Install script will download golang package, if your server is in the mainland China, you may set go proxy like this export GOPROXY=https://goproxy.cn

Join member cluster

In the following steps, we are going to create a member cluster and then join the cluster to karmada control plane.

1. Create member cluster

We are going to create a cluster named member1 and we want the KUBECONFIG file in $HOME/.kube/karmada.config. Run following command:

# hack/create-cluster.sh member1 $HOME/.kube/karmada.config

The script hack/create-cluster.sh will create a cluster by kind.

2. Join member cluster to karmada control plane

You can choose one of mode: push or pull, either will help you join a member cluster.

2.1. Push Mode: Karmada controls the member cluster initiative by using karmadactl

The command karmadactl will help to join the member cluster to karmada control plane, before that, we should switch to karmada apiserver:

# kubectl config use-context karmada-apiserver

Then, install karmadactl command and join the member cluster:

# go get github.com/karmada-io/karmada/cmd/karmadactl
# karmadactl join member1 --cluster-kubeconfig=$HOME/.kube/karmada.config

The karmadactl join command will create a Cluster object to reflect the member cluster.

2.2. Pull Mode: Installing karmada-agent in the member cluster

The following script will install the karamda-agent to your member cluster, you need to specify the kubeconfig and the cluster context of the karmada control plane and member cluster.

# hack/deploy-karmada-agent.sh <karmada_apiserver_kubeconfig> <karmada_apiserver_context_name> <member_cluster_kubeconfig> <member_cluster_context_name>

3. Check member cluster status

Now, check the member clusters from karmada control plane by following command:

# kubectl get clusters
NAME      VERSION   MODE   READY   AGE
member1   v1.20.2   Push   True    66s

Propagate application

In the following steps, we are going to propagate a deployment by karmada.

1. Create nginx deployment in karmada.

First, create a deployment named nginx:

# kubectl create -f samples/nginx/deployment.yaml

2. Create PropagationPolicy that will propagate nginx to member cluster

Then, we need create a policy to drive the deployment to our member cluster.

# kubectl create -f samples/nginx/propagationpolicy.yaml

3. Check the deployment status from karmada

You can check deployment status from karmada, don't need to access member cluster:

# kubectl get deployment
NAME    READY   UP-TO-DATE   AVAILABLE   AGE
nginx   1/1     1            1           43s

Kubernetes compatibility

Kubernetes 1.15 Kubernetes 1.16 Kubernetes 1.17 Kubernetes 1.18 Kubernetes 1.19 Kubernetes 1.20 Kubernetes 1.21
Karmada v0.6 -
Karmada v0.7 -
Karmada v0.8
Karmada HEAD (master)

Key:

  • Karmada and the Kubernetes version are exactly compatible.
  • + Karmada has features or API objects that may not be present in the Kubernetes version.
  • - The Kubernetes version has features or API objects that Karmada can't use.

Meeting

Regular Community Meeting:

Resources:

Contact

If you have questions, feel free to reach out to us in the following ways:

Contributing

If you're interested in being a contributor and want to get involved in developing the Karmada code, please see CONTRIBUTING for details on submitting patches and the contribution workflow.

License

Karmada is under the Apache 2.0 license. See the LICENSE file for details.

karmada's People

Contributors

chenxianpao avatar daixiang0 avatar futuretea avatar garfcat avatar garrybest avatar githubxsy avatar gy95 avatar hantmac avatar huiwq1990 avatar iceber avatar karmada-bot avatar kevin-wangzefeng avatar leofang94 avatar leoliuyan avatar lfbear avatar mrlihanbo avatar mukulkolpe avatar onyinye91-ctrl avatar pigletfly avatar qianjun1993 avatar rainbowmango avatar rhnsharma avatar saiyan86 avatar shinytang6 avatar tinyma123 avatar vincent-pli avatar weilaaa avatar x15zhang avatar xishanyongye-chang avatar yangcheng-icbc avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.