Git Product home page Git Product logo

fingraph's Introduction

fingraph

codecov

This repo contains ADMM implementations to estimate weighted undirected graphs (Markov random fields) under Student-t assumptions with applications to financial markets.

Installation

fingraph depends on the development version of spectralGraphTopology, which can be installed as:

> devtools::install_github("convexfi/spectralGraphTopology")

The stable version of fingraph can be installed directly from CRAN:

> install.packages("fingraph")

Microsoft Windows

On MS Windows environments, make sure to install the most recent version of Rtools.

Usage

Learning a graph of cryptocurrencies

library(igraph)
library(fingraph)
library(fitHeavyTail)
library(xts)
set.seed(123)

# load crypto prices into an xts table
crypto_prices <- readRDS("examples/crypto/crypto-prices.rds")
colnames(crypto_prices)
#>  [1] "BTC"      "ETH"      "USDT"     "BNB"      "USDC"     "XRP"     
#>  [7] "ADA"      "HEX"      "DOGE"     "SOL"      "MATIC"    "DOT"     
#> [13] "TRX"      "LTC"      "BUSD"     "SHIB"     "AVAX"     "DAI"     
#> [19] "LEO"      "LINK"     "ATOM"     "UNI7083"  "XMR"      "OKB"     
#> [25] "ETC"      "TON11419" "XLM"      "BCH"      "ICP"      "CNX"     
#> [31] "TUSD"     "FIL"      "HBAR"     "CRO"      "LDO"      "NEAR"    
#> [37] "VET"      "QNT"      "ALGO"     "USDP"     "FTM"      "GRT6719"

# compute log-returns
log_returns <- diff(log(crypto_prices), na.pad = FALSE)

# estimate a weighted, undirected graph (markov random field)
graph_mrf <- learn_kcomp_heavytail_graph(scale(log_returns),
                                         k = 8,
                                         heavy_type = "student",
                                         nu = fit_mvt(scale(log_returns))$nu,
                                         verbose = FALSE)

# plot network
net <- graph_from_adjacency_matrix(graph_mrf$adjacency,
                                   mode = "undirected",
                                   weighted = TRUE)
cfg <- cluster_fast_greedy(as.undirected(net))
la_kcomp <- layout_nicely(net)
V(net)$label.cex = 1
plot(cfg, net, vertex.label = colnames(crypto_prices),
     layout = la_kcomp,
     vertex.size = 4.5,
     col = "black",
     edge.color = c("#686de0"),
     vertex.label.family = "Helvetica",
     vertex.label.color = "black",
     vertex.label.dist = 1.25,
     vertex.shape = "circle",
     edge.width = 20*E(net)$weight,
     edge.curved = 0.1)

Learning a network of S&P500 stocks

library(xts)
library(igraph)
library(fingraph)
library(fitHeavyTail)
library(readr)
set.seed(123)

# load table w/ stocks and their sectors
SP500 <- read_csv("examples/stocks/SP500-sectors.csv")

# load stock prices into an xts table
stock_prices <- readRDS("examples/stocks/stock-data-2014-2018.rds")
colnames(stock_prices)
#>  [1] "AEE"   "AEP"   "AES"   "AIV"   "AMT"   "ARE"   "ATO"   "ATVI"  "AVB"  
#> [10] "AWK"   "BXP"   "CBRE"  "CCI"   "CHTR"  "CMCSA" "CMS"   "CNP"   "CTL"  
#> [19] "D"     "DIS"   "DISCA" "DISCK" "DISH"  "DLR"   "DRE"   "DTE"   "DUK"  
#> [28] "EA"    "ED"    "EIX"   "EQIX"  "EQR"   "ES"    "ESS"   "ETR"   "EVRG" 
#> [37] "EXC"   "EXR"   "FB"    "FE"    "FRT"   "GOOG"  "GOOGL" "HST"   "IPG"  
#> [46] "IRM"   "KIM"   "LNT"   "LYV"   "MAA"   "NEE"   "NFLX"  "NI"    "NRG"  
#> [55] "NWS"   "NWSA"  "O"     "OMC"   "PEAK"  "PEG"   "PLD"   "PNW"   "PPL"  
#> [64] "PSA"   "REG"   "SBAC"  "SLG"   "SO"    "SPG"   "SRE"   "T"     "TMUS" 
#> [73] "TTWO"  "TWTR"  "UDR"   "VNO"   "VTR"   "VZ"    "WEC"   "WELL"  "WY"   
#> [82] "XEL"

# compute log-returns
log_returns <- diff(log(stock_prices), na.pad = FALSE)

# estimate a weighted, undirected graph (markov random field)
graph_mrf <- learn_kcomp_heavytail_graph(scale(log_returns),
                                         rho = 10,
                                         k = 3,
                                         heavy_type = "student",
                                         nu = fit_mvt(scale(log_returns))$nu,
                                         verbose = FALSE)
#> Warning in tclass.xts(x): index does not have a 'tclass' attribute

#> Warning in tclass.xts(x): index does not have a 'tclass' attribute

# map stock names and sectors
stock_sectors <- c(SP500$GICS.Sector[SP500$Symbol %in% colnames(stock_prices)])
stock_sectors_index <- as.numeric(as.factor(stock_sectors))

# plot network
net <- graph_from_adjacency_matrix(graph_mrf$adjacency,
                                   mode = "undirected",
                                   weighted = TRUE)
la_kcomp <- layout_nicely(net)
V(net)$label.cex = 1
colors <- c("#FD7272", "#55E6C1", "#25CCF7")
V(net)$color <- colors[stock_sectors_index]
V(net)$type <- stock_sectors_index
V(net)$cluster <- stock_sectors_index
E(net)$color <- apply(as.data.frame(get.edgelist(net)), 1,
                      function(x) ifelse(V(net)$cluster[x[1]] == V(net)$cluster[x[2]],
                                        colors[V(net)$cluster[x[1]]], 'grey'))
plot(net, vertex.label = colnames(stock_prices),
     layout = la_kcomp,
     vertex.size = 4.5,
     vertex.label.family = "Helvetica",
     vertex.label.dist = 1.25,
     vertex.label.color = "black",
     vertex.shape = "circle",
     edge.width = 20*E(net)$weight,
     edge.curved = 0.1)

Citation

If you made use of this software please consider citing:

Links

fingraph's People

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar

fingraph's Issues

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.