Git Product home page Git Product logo

discussion's Introduction

Discussion

I will guess that Q* = a variation of Q-learning + A-star algorithm. The training approach involves using GPT-5 to generate action tokens, encompassing actions akin to accessing search engines or vector index. Then, off-policy utilization of data already collected by GPT facilitates comparison of responses: an extension of RLHF. This model should be capable of externalizing contextual information, rather than storing all data in FFN layers as current LLM approach. Thus, the model's focal point becomes the stability of RL training.

For example, if I ask Q* "What are the latest trends in AI research?" The result generated by Q* might resemble:

# Q* is highly likely to have an Action to call other LLMs.
# An LLM would search for these three keywords in a self-built vector index or existing search engine, then integrate the retrieved information into the scratchpad according to your Prompt.
<Search>hot AI topics<Search><WriteToScratchpad>
<Search>trending AI publications<Search><WriteToScratchpad>
<Search>trending AI tools<Search><WriteToScratchpad>

# When a Sequence of actions can be generated, you can add reasoning/inference at this step, incorporating initial answers (drafts) into the Scratchpad.
<ScratchpadInference>

# After reading the information in the Scratchpad and considering it with the Prompt, generate an Output for the user.
<ReadContextGenerateOutput> 

(Sorry for the bad example.)

In this way, the model satisfies:

  1. Context externalization (reducing model size), moving the context information out of FFN, thus aslo avoiding Q* from generating hallucinations based on existing information in the model.

  2. It does not directly output text but Actions, allowing for reasoning/inference before <Output>.

  3. It can generate search Actions, enabling the use of LLM or other tools to extract the latest information.

  4. More broadly, the ability to generate Actions allows sending Actions to other Tools. For example, like the current poor arithmetic capability of GPT-4. Previously, the model had to perform mathematical operations internally, but what if it could accurately send Actions or paste numbers to a calculator tool? (<SendNumberToCalculator> or <SendOperationToCalculator>), Here, the LLM only needs to generate commands and copy-paste values; specific tools handle the precise calculations that LLM is least adept at. For complex algorithms, LLM only needs to list equations on the Scratchpad, which can then be solved using various EquationToAnswer tools.

  5. Compared to GPT-4, this algorithm is not a knowledgeable model in the sense of storing tons of information in its weights, but rather a good planner, task assigner, and tool user. After listing the response steps, it allows each tool (person) to perform its role, and then, once all reports (Scratchpads) are given back, it consolidates the data and requests the spokesperson () to provide the most appropriate answer.

Many aspects here are very similar to how LangChain deals with various stores, but it will now be applied to variety of tools. OpenAI's move towards AGI via RL is also in line with public expectations. Under non-Reward training, the model's best fit resembles collective human knowledge, surpassing individual performance but finding it difficult to surpass collective human knowledge. However, in RL, whether in AlphaGO or OpenAI Five, it can surpass collective human konwledge. Because Supervised Learning or Self-Supervised learning imitate humans from the training set, imitating diagnoses given by doctors, or the next most likely word a human would write. RL, on the other hand, is consequentialism; it can explore to find solutions humans have not tried, chess moves that haven't been played; thereby unlocking possibilities beyond human collective intelligence. If we can indeed find a stable, universally applicable RL algorithm and training method that effectively utilizes existing data, then we are truly not far from AGI.

Sorry for this chaotic discussion; please feel free to share your insights.

Chinese version

未看先猜, Q* = Q-learning的variantion + A-star, 訓練方式是使用GPT-5來產生Action的Token, 在Action的集裡包含了類似對搜尋引擎或是Vector Index的訪問. 然後是Off-policy的使用現在GPT已經收集的數據 (讓你比較哪個回答比較好): RLHF的延伸. 這個模型應該可以外置化Context信息, 而不是像GPT-3或4將所有的資訊存在FFN層. 所以整個模型的重點會變成RL訓練的穩定性.

舉個例子: 如果我詢問Q* "請問最近前沿AI的研究情況如何?"

那Q*產生的結果或許會像是:

# 一個LLM將會去自建的VectorIndex或是現有的搜尋引擎搜尋這三個關鍵字, 然後將將搜尋來的訊息依照你的Prompt來整合進scratchpad. 
# Q* 大概率能有一個Action是去調用LLM的.

<Search>hot AI topics<Search><WriteToScratchpad>
<Search>trending AI publications<Search><WriteToScratchpad>
<Search>tredning AI tools<Search><WriteToScratchpad>

# 能產生Sequence of actions 時候, 你就能加入推理這個步驟, 在Scrathpad加入初步的解答(草稿)
<ScratchpadInference>

# 讀取Scratchpad裡的訊息加上Prompt以後產生Output給你
<ReadContextGenerateOutput> 

這樣的話, 這個模型就滿足

  1. Context外置 (縮小模型大小), 記憶信息從FFN移出以後, 也可以避免Q*去依照現有的資訊產生hallucination.
  2. 不是直接的輸出文字, 而是Actions, 那在輸出文字做<Output>前, 就可以加入<Reasoning>/<Inference>這個步驟.
  3. 能產生搜索的Actions, 那就能使用LLM或其他工具去擷取最新的訊息
  4. 更廣義的來說上一項: 能產生Actions, 那就可以發送Action給其他Tools. 例如像是現在GPT-4渣爛的大數加減乘除. 原本在GPT-4, 模型必須得在內部進行數學運算, 但如果他能發送準確Actions給計算機這個Tool的時候呢?(<SendNumberToCalculator> 或是<SendOperationToCalculator>), 這時候LLM只要負責產生命令, 和複製貼上數值而已; LLM最不擅長的精確計算則可以交由特定的工具來完成. 對於複雜的算法來說, LLM只需要列出Equation到Scratchpad以後, 就可以藉由現在一堆的EquationToAnswer的工具來解了.
  5. 這裡面很多概非常相似於LangChain裡面面對各種Store的方式.
  6. 相對於GPT-4, 這個算法並不是一個飽讀詩書, 滿腹經綸的模型, 但它會是一個好的規劃者, 工作指派者, 工具使用者; 將回答步驟列出後, 讓各個工具(人員)發揮所常; 然後當各個工具(人員), 把報告(Scratchpad)都上交上來後; 它會將資料彙整以後請發言人()做出最適當的回答.
  7. OpenAI 以RL的方向去往AGI的方向邁進也很符合大眾的預想, 在非Reward的訓練方式下, 模型最好的擬合結果就是媲美人類的集體知識, 它可以超過個人的Performance, 但很難越過人類的集體知識, 但RL不管在AlphaGO或是OpenAI Five, 都是可超人類群體的. 因為Supervised Learning 或是 Self-Supervised learning都是在從訓連集中學習來模仿人類, 模仿醫生給的診斷, 模仿人類最有可能寫出的下一個字. 而RL是結果論的, 它能靠Exploration去尋找人類並沒有嘗試過的解法, 沒有下過的棋路; 進而迸發超越人類集體的可能性.
  8. 如果我們真的能找到一個穩定通用, 有效運用現有資料的RL算法和訓練方法; 那我們真的離AGI不遠了

抱歉, 講得很亂; 請大家多多來探討自己的見解.

English version

discussion's People

Contributors

chihchenghsieh avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.