Git Product home page Git Product logo

mean-shifted-anomaly-detection's Introduction

Mean-Shifted Contrastive Loss for Anomaly Detection

Official PyTorch implementation of “Mean-Shifted Contrastive Loss for Anomaly Detection”.

Virtual Environment

Use the following commands:

cd path-to-directory
virtualenv venv --python python3
source venv/bin/activate
pip install -r requirements.txt

Experiments

To replicate the results on CIFAR-10 for a specific normal class:

python main.py --dataset=cifar10 --label=n

Where n indicates the id of the normal class.

To run experiments on different datasets, please set the path in utils.py to the desired dataset.

Citation

If you find this useful, please cite our paper:

@article{reiss2021mean,
  title={Mean-Shifted Contrastive Loss for Anomaly Detection},
  author={Reiss, Tal and Hoshen, Yedid},
  journal={arXiv preprint arXiv:2106.03844},
  year={2021}
}

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.