Git Product home page Git Product logo

predictive-maintenance-using-lstm's Introduction

Recurrent Neural Networks for Predictive Maintenance

  • Author: Umberto Griffo
  • Twitter: @UmbertoGriffo

Requirement

Environment

* 2 Intel Xeon E5-2630 v4 2.2GHz, 25M Cache, 8.0 GT/s QPI, Turbo, HT, 10C/20T (85W) Max Mem 2133MHz
* 128 GB Ram
* 1 TB Disk

Problem Description

In this example I build an LSTM network in order to predict remaining useful life (or time to failure) of aircraft engines [3] based on scenario described at [1] and [2]. The network uses simulated aircraft sensor values to predict when an aircraft engine will fail in the future so that maintenance can be planned in advance. The question to ask is "Given these aircraft engine operation and failure events history, can we predict when an in-service engine will fail?" We re-formulate this question into two closely relevant questions and answer them using two different types of machine learning models:

* Regression models: How many more cycles an in-service engine will last before it fails?
* Binary classification: Is this engine going to fail within w1 cycles?

Data

In the Dataset directory there are the training, test and ground truth datasets. The training data consists of multiple multivariate time series with "cycle" as the time unit, together with 21 sensor readings for each cycle. Each time series can be assumed as being generated from a different engine of the same type. The testing data has the same data schema as the training data. The only difference is that the data does not indicate when the failure occurs. Finally, the ground truth data provides the number of remaining working cycles for the engines in the testing data. The following picture shows a sample of the data:

You can find more details about the data at [1] and [2].

Results of Regression model

Mean Absolute Error Coefficient of Determination (R^2)
12 0.7965

The following pictures shows the trend of loss Function, Mean Absolute Error, R^2 and actual data compared to predicted data:

Results of Binary classification

Accuracy Precision Recall F-Score
0.97 0.92 1.0 0.96

The following pictures shows trend of loss Function, Accuracy and actual data compared to predicted data:

References

predictive-maintenance-using-lstm's People

Contributors

umbertogriffo avatar

Watchers

James Cloos avatar Bharat Nallan avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.