Git Product home page Git Product logo

roladyn's Introduction

ROLADYN

MATLAB suite for simulating the lateral dynamics of rotating machines.

Example rotor-bearing system

Define a rotating machine with a flexible rotor as follows:

P.Rotor = {};
P.Bearing = {};
P.Stator = {};

% Rotor
P.Rotor{1}.Name = 'Main';
P.Rotor{1}.Speed = 1;
P.Rotor{1}.Nodes = [0, 0.25, 0.5, 0.75, 1.0]; % Nodes of the FEM

%% Flexible shaft
P.Rotor{1}.Shaft = {};
P.Rotor{1}.Shaft{1}.Name = 'Shaft';
P.Rotor{1}.Shaft{1}.iNodes = 1:5;
P.Rotor{1}.Shaft{1}.Section.ro = 0.0;
P.Rotor{1}.Shaft{1}.Section.ri = 0.025;
P.Rotor{1}.Shaft{1}.Material.Name = 'steel'; 
P.Rotor{1}.Shaft{1}.Material.E   = 210E9;
P.Rotor{1}.Shaft{1}.Material.rho = 7800;

%% Disc
P.Rotor{1}.Disc = {};
P.Rotor{1}.Disc{1}.Name = 'EndCap';
P.Rotor{1}.Disc{1}.iNode = 3;
P.Rotor{1}.Disc{1}.Type = 'Rigid';
P.Rotor{1}.Disc{1}.Options.bGyro = 1;
P.Rotor{1}.Disc{1}.Material.Name = 'steel';
P.Rotor{1}.Disc{1}.Material.E = Inf; %Rigid disc
P.Rotor{1}.Disc{1}.Material.rho = 7800;
P.Rotor{1}.Disc{1}.Ring.Geometry.R = [0 0.3];
P.Rotor{1}.Disc{1}.Ring.Geometry.t = 15E-3;

% Bearings
P.Bearing{1}.Name = 'LeftBearing';
P.Bearing{1}.kyy = 1E3;
P.Bearing{1}.kxx = 1E3;
P.Bearing{1}.cxx = 1E-3;
P.Bearing{1}.cyy = 1E-3;
P.Bearing{1}.Node{1}.Type = 'rotor';
P.Bearing{1}.Node{1}.iNode = 1;
P.Bearing{1}.Node{1}.iRotor = 1;
P.Bearing{1}.z = 0.0;

P.Bearing{2}.Name = 'RightBearing';
P.Bearing{2}.kyy = 1E3;
P.Bearing{2}.kxx = 1E3;
P.Bearing{2}.cxx = 1E-3;
P.Bearing{2}.cyy = 1E-3;
P.Bearing{2}.Node{1}.Type = 'rotor';
P.Bearing{2}.Node{1}.iNode = 5;
P.Bearing{2}.Node{1}.iRotor = 1;
P.Bearing{2}.z = 1.0;

% Excitation 
P.Excite{1}.Name = 'Unbalance';
P.Excite{1}.Type = 'unbalance';
P.Excite{1}.Mode = 'sync';
P.Excite{1}.iRotor = 1;
P.Excite{1}.iDisc =  1;
P.Excite{1}.m     =  0.01;
P.Excite{1}.r     =  0.1;
P.Excite{1}.Angle =  0.0;

P = setupsystem(P);

You can visualise the system with:

plot_system(P);

which will generate a plot of the rototing machine like this:

system

Modal analysis

To compute the natural frequencies at a range of speeds:

O = linspace(0,50,100)*2*pi; % Speed in rad/s
[V,d,W] = rotor_eig(P.Model,O);

where:

  • V and W contain the left and right eigevectors
  • d contains the eigenvalues

at each speed.

To convert these eigenvalues and eigenvectors vectors into natural frequencies and mode shapes, run the following:

iNode = 2;
[omega,zeta, modes] = eig2modes(V,d,W);

% sort the modes
[~,ii] = sort(omega(:,1));
omega = omega(ii,:);
zeta = zeta(ii,:);
modes = modes(:,ii,:);

kappa = compute_whirl(P,modes,iNode);

where:

  • omega contains the natural frequencies in rad/s
  • zeta contains the non-dimensionalised damping ratios
  • kappa contains the whirl direction, defined in terms of the motion at the central disc (node 2).

Campbell diagram

To plot the Campbell diagram with the first 2 modes, run the following

options.xunits = 'Hz';
iPlot = 1:2;
plot_campbell(P,O,omega(iPlot,:),zeta(iPlot,:),kappa(:,iPlot,:),iNode, options); 

which will generate a plot of the natural frequencies as a function of rotation speed like this:

Campbell diagram

Whirl

To plot the shape of the response at each resonance (ie each mode shape), run the following:

plot_whirl(P,O,modes(:,iPlot,:),omega(iPlot,:),kappa(:,iPlot,:));

Whirl

There is a slider which you can use to change which rotation speed the modes are plotted from.

Synchronous response

Compute the response at all frequencies with:

[U,Udot,Uddot] = excitation_frf(P,O);
F = P.Model.Excite.K*U + P.Model.Excite.C*Udot + P.Model.Excite.M*Uddot;
q = rotor_frf_modal(V,d,W,F,O);

And then plot the FRF of the disc response (DOF 9 and 10) using:

options.xunits = 'Hz';
options.iPlot = 9:10;
plot_frf(P,q,O,options);

Whirl

roladyn's People

Contributors

alxhslm avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.