Git Product home page Git Product logo

R-Drop: Regularized Dropout for Neural Networks

This repo contains the code of our NeurIPS-2021 paper, R-drop: Regularized Dropout for Neural Networks.

R-Drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidirectional KL-divergence of the output distributions of any pair of sub models sampled from dropout in model training.

@inproceedings{liang2021rdrop,
  title={R-Drop: Regularized Dropout for Neural Networks},
  author={Liang, Xiaobo* and Wu, Lijun* and Li, Juntao and Wang, Yue and Meng, Qi and Qin, Tao and Chen, Wei and Zhang, Min and Liu, Tie-Yan},
  booktitle={NeurIPS},
  year={2021}
}

Usage:

R-Drop is an almost universal method for supervised tasks and even performs well for semi-supervised setting. For other settings and tasks that are not mentioned in our paper, feel free to try the following piece of code.

import torch.nn.functional as F

# define your task model, which outputs the classifier logits
model = TaskModel()

def compute_kl_loss(p, q, pad_mask=None):
    
    p_loss = F.kl_div(F.log_softmax(p, dim=-1), F.softmax(q, dim=-1), reduction='none')
    q_loss = F.kl_div(F.log_softmax(q, dim=-1), F.softmax(p, dim=-1), reduction='none')
    
    # pad_mask is for seq-level tasks
    if pad_mask is not None:
        p_loss.masked_fill_(pad_mask, 0.)
        q_loss.masked_fill_(pad_mask, 0.)

    # You can choose whether to use function "sum" and "mean" depending on your task
    p_loss = p_loss.sum()
    q_loss = q_loss.sum()

    loss = (p_loss + q_loss) / 2
    return loss

# keep dropout and forward twice
logits = model(x)

logits2 = model(x)

# cross entropy loss for classifier
ce_loss = 0.5 * (cross_entropy_loss(logits, label) + cross_entropy_loss(logits2, label))

kl_loss = compute_kl_loss(logits, logits2)

# carefully choose hyper-parameters
loss = ce_loss + α * kl_loss

Quick Links:

R-Drop is capable to handle many tasks for both NLP and CV:

  1. Neural Machine Translation Task

  2. Abstractive Summarization Task

  3. Language Modeling Task

  4. Language Understanding Task

  5. Image Classification Task

lxb's Projects

efficient_alpaca icon efficient_alpaca

The aim of this repository is to utilize LLaMA to reproduce and enhance the Stanford Alpaca

fennec icon fennec

Fine-grained Language Model Evaluation and Correction via Branching and Bridging

openltg-mlm icon openltg-mlm

Open-ended Long Text Generation via Masked Language Modeling

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.